人工智能之数学基础:瑞利商与特征值的关系

本文重点

瑞利商是线性代数中的一个重要概念,具有丰富的性质和广泛的应用。通过求解瑞利商的最大值或最小值,可以找到矩阵的特征值和特征向量,进而解决降维、聚类、优化和计算机视觉等领域的问题。广义瑞利商作为瑞利商的推广形式,在机器学习和数据分析中也发挥着重要作用。

瑞利商的定义

瑞利商(Rayleigh Quotient)是线性代数中的一个重要概念,它定义为一个标量函数,形式为:

其中,A 是一个 n×n 的Hermitian矩阵(在实数情况下,通常指的是实对称矩阵),x 是一个非零的 n 维向量。

瑞利商的性质

缩放不变性:

对于任意的非0实数k,可以得到:

R(A,x)=R(A,kx)

这个表示对向量x缩放之后,瑞利商不会发生变化。

上下界性质:

由于将向量乘以非0系数k之后,瑞利商并没

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天五分钟玩转人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值