AI产品经理,如何规划AI产品的MVP?

MVP对于创业团队来说是很重要的,可以快速验证团队的目标,快速试错。本篇文章中笔者从MVP的概念出发,介绍了如何设计AI产品MVP及具体方法,供大家一同参考和学习。

MVP是指的什么?

MVP (最小化可实行产品,Minimum Viable Product)是 Eric Ries 在《精益创业》中关于「精益创业」(Lean Startup)的核心思想,是指通过提供最小化可行产品获取用户反馈,并在这个最小化可行产品上持续快速迭代,直到产品到达一个相对稳定的阶段。它可以快速验证团队的目标,快速试错。

下面这个图也许大家看到过:

方案一:先建一个轮子,看用户需不需要。再来两个轮子试试。还不行再造个汽车壳试试?还是不行,做个完整的车用户满意了。

方案二:先做个滑板。用户感觉不错,反馈说再快点就好了,然后升级成滑板车,用户说不错,就是太累,能不能坐着,然后自行车出来了,不错不错,可以更快的吗?摩托车出现了,太棒了,就是乘的人太少,然后那汽车出现了。

第二种方案,开始成本低,见效快,能快速投入市场。保障足够的现金流,后续产品研发有方向,有数据,成功率高。还有充足的资金支持。而第一种方法大概率会夭折了。

如何设计AI产品MVP

在传统产品设计中,MVP更多是为了验证产品功能验证,和核心功能规划取舍,能够快速的开发出对用户有价值的最小可用产品,从功能列表中定位出产品的核心功能,在投放市场收集用户反馈,然后再调整产品的规划。

而在AI产品的MVP设计中要多加入一个环节:技术的可实现性。

现阶段AI技术还不是很成熟,也还没有绝对普及,而用户或者说老板对AI可实现的功能的期望过高,所以我们需要在产品设计前先对技术可实现性做够调研,在产品设计后要和技术团队做技术实现程度的沟通,要知道其他家技术能做到的你们不一定做得到。

总之,产品经理要能够尽可能的降低客户或者老板的期望,尽可能的提高技术团队的实现效果。

AI产品MVP的三大方法

1. API接口调用

人工智能产品大都是应用到了自然语言处理,图像技术,文字技术,人脸与人体识别,视频技术,AR与VR,数据智能,和知识图谱等。

这些底层技术各大厂都已经做的很成熟了,在MVP阶段,暂不用考虑数据安全等问题,完全可以直接调接口。

使自己产品具备基础AI能力。以下就是百度AI平台开放的相应技术接口的一部分。

2. 演示视频

风靡全球的文件共享产品Dropbox,当时在想法初期,其实并没有开发一个产品出来,而是采用了MVP的方法,用3分钟左右的视频展示了Dropbox的预期功能,直接结果就是注册量一夜之间从5000人激增到75000人——还发生在没有实物产品的情况下。

上面这个片段相信大家都看过,这是今年3月,B站上一个名叫“换脸哥”的用户上传的一条1994年版《射雕英雄传》的片段,将里面黄蓉饰演者朱茵的脸换成了杨幂的脸。

这个视频的播放了和传播度足以说明,一款换脸软件是可行的。然后8月31号ZAO上线了。

3. 人工+智能

人工智能的本质就是智能替代人工,但是智能的开发成本太高,那能不能先用人工替代智能,或者先替代一部分智能。

例如,院长说我们的APP上要有智能医生,要能回答用户问题。然后去做知识图谱吗?收集语料-构建关系-搭建知识图谱-训练模型-意图识别。

当整个工作完成估计半年过去了,那该怎么办呢?找设计机器人头像,然后上线!

找医生来冒充机器人,在线回复用户问题,首先要验证的是会不会有人来问机器人问题,会问到什么问题,会问到什么程度,试问机器人告诉你你的病要吃什么药,你敢吃吗?

当搜集到足够多的问题后,对问题进行统计,再来评估是用知识图谱还是知识库QA。

总结

对于AI产品经理来说,了解技术边界,和技术团队的能力边界至关重要,你的所有的产品的设计必须基于这两点,要不很可能你的产品都不能上线。

AI产品的MVP其实更多是验证产品的可实现性。AI产品应该具备更高的容错性,在产品前期要要更多的妥协,以产品的主要功能完善为第一要务,细节的打磨要等产品上线后慢慢来。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

<think>嗯,用户让我介绍一下人工智能产品经理,首先我需要明确这个职位的定义和职责。人工智能产品经理,听名字就知道是结合了AI技术和产品管理的角色。可能和普通的产品经理有什么不同呢? 接下来,我应该分几个部分来介绍。可能需要先解释什么是人工智能产品经理,然后职责、技能要求、挑战,最后发展前景。这样结构比较清晰。 职责方面,他们需要负责AI产品的全生命周期,从需求分析到上线。可能需要协调技术团队和业务部门,确保产品符合用户需求。还有数据管理和模型评估,这点和传统产品经理不同,因为AI产品依赖大量数据和算法。 技能方面,技术理解是关键,比如机器学习、自然语言处理这些概念。产品管理能力当然也不能少,比如用户调研、项目管理。另外跨部门协作和沟通能力也很重要,毕竟要和工程师、数据科学家打交道。 挑战部分,技术的不确定性可能是一个大问题,比如模型效果不达预期。还有数据质量和隐私问题,合规性也是需要考虑的。用户期望管理,AI产品可能被高估,需要合理引导预期。 发展前景方面,随着AI应用越来越广,需求会增长。涉及的行业也很多,比如金融、医疗、教育,所以机会应该不少。持续学习新技术和行业动态对职业发展很重要。 需要注意用户可能不太了解技术细节,所以解释时要避免太专业的术语,用易懂的例子。比如在讲技术理解时,可以提到机器学习的基本原理,但不用深入算法细节。 还要确保结构清晰,分点列出,方便用户阅读。可能需要用加粗或者标题来区分各个部分,但根据系统指令,应该避免使用Markdown,所以用数字或项目符号。 检查一下是否符合系统级指令,比如数学公式是否正确使用$...$,不过这次内容可能不涉及公式。但如果有提到技术术语如模型评估指标,可能需要用LaTeX,比如准确率$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$,不过不确定是否需要,可能这里不需要。 最后用中文自然流畅地组织语言,确保每个部分衔接合理,帮助用户逐步理解人工智能产品经理的角色。</think>### 人工智能产品经理介绍 人工智能产品经理AI Product Manager)是专注于AI技术应用与产品落地的复合型角色,需兼顾技术理解、市场需求和商业逻辑。以下是关键要点: --- #### 一、核心职责 1. **需求分析与定义** - 深入挖掘用户需求,结合AI技术可行性(如机器学习、自然语言处理)设计产品功能。 - 例:设计智能客服系统时,需明确自然语言理解(NLU)的准确率目标$Accuracy \geq 90\%$。 2. **技术协调与落地** - 充当桥梁角色,协调算法工程师、数据科学家与业务团队,确保技术方案与需求对齐。 - 监督模型训练、评估及迭代,例如验证模型效果是否符合指标$F1\text{-}score > 0.85$。 3. **数据管理与合规** - 主导数据采集、清洗及标注流程,保障数据质量与合规性(如符合GDPR要求)。 4. **产品生命周期管理** - 从原型验证到规模化部署,全程把控产品开发节奏,平衡资源投入与优先级。 --- #### 二、核心能力要求 1. **技术理解** - 掌握AI基础知识(如监督学习、深度学习框架),能评估技术方案的可行性。 - 理解技术限制,例如图像识别模型在低光照条件下的准确率下降问题。 2. **产品设计能力** - 熟悉用户调研、竞品分析及MVP最小可行产品)设计方法。 3. **跨团队协作** - 擅长与工程师、设计师、法务等多角色沟通,推动复杂项目落地。 4. **商业敏感度** - 能将技术能力转化为商业价值,例如通过预测模型降低企业运营成本$Cost_{reduce} = 15\%$。 --- #### 三、常见挑战 1. **技术不确定性** - AI模型效果受数据质量、算法选择等因素影响,需预留容错空间。 2. **用户期望管理** - 避免过度承诺,明确AI能力的边界(如“推荐系统无法100%精准”)。 3. **伦理与隐私风险** - 解决算法偏见、数据滥用等问题,确保产品符合伦理规范。 --- #### 四、发展前景 - **行业需求**:随着AI在金融、医疗、教育等领域的渗透,岗位需求持续增长。 - **职业路径**:可向高级产品总监、AI战略规划等方向进阶,或深耕垂直领域(如自动驾驶、AI医疗)。 - **学习建议**:持续关注技术前沿(如大模型AIGC),同时提升商业分析能力。 --- ### 总结 人工智能产品经理需要兼具“技术理性”与“产品思维”,既要懂算法逻辑,又要能将技术转化为用户价值。适合对AI感兴趣、擅长跨领域协作的复合型人才。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值