【AI大模型】Llama Factory训练全过程(超详细实况一)

前言

谨以此文记录踩坑实况,一则日后温习,二则指路旁人

llamafactory微调

1.启动llamafactory可视化页面选择模型

docker部署完成后

#运行此命令进入容器内部
docker exec -it llamafactory /bin/bash
# 启动可视化页面
llamafactory-cli webui

在这里插入图片描述

然后在本机访问localhost:7860 在这里插入图片描述

语言和需要的模型,在此选择后,模型路径会自动填充,启动训练时会自动向huggingface下载base模型,但由于国内原因,可能无法访问到huggingface,可以选择设置魔搭下载地址

set USE_MODELSCOPE_HUB=1

或者使用本地地址,这边是使用了本地地址 首先在魔搭社区选择需要的文件git 拉取到本地
第一次需要安装git-lfs

git lfs install

然后选择需要的模型地址git clone即可

文件映射

由于我们使用的是docker部署的llamafactory,因此调用模型前,需要将本地的模型文件夹映射到docker镜像中,建议一并设置多个路径用以存放微调后的模型文件,命令行中输入多个映射对即可

docker run -v <本地存放目录>:<容器目录> <镜像名称>  <本地存放目录>:<容器目录> <镜像名称> 

然后在模型路径中填写该文件在docker镜像的地址

继续选择参数

在这里插入图片描述

数据集设置

提示模板一定要选取,不同模型对应的模板也是不尽相同的,如果有自定义格式文件,可导入到镜像中,然后在data_info.json中进行注册,否则无法在列表选择

在这里插入图片描述
然后是比较关键的几个参数,对训练结果影响巨大

在这里插入图片描述
选择数据集后,学利率可以选择默认5e-5

#学习率
#学习率越低,训练越准确,相应的时间会更长
#对于llama3.1-8b 选择低一点的学习率比较好

#轮数
#训练轮次

#最大样本数
#即为'训练时在提供的每个数据集最多提取多少个样子进行训练'
#数据集较多的情况下建议适当设置更小的参数

训练轮数(!!!)

轮数的设置 目前没有更好的办法,全凭经验对新手是不友好的,比较推荐的方案是设置一个相当大的轮数,在训练过程中关注loss曲线,当曲线越趋近于平滑,说明训练已经接近完成,此时应手动停止训练以避免过拟合

在这里插入图片描述

当然也支持命令行调用训练的方式

在这里插入图片描述

测试和导出

切换chat Tab

在这里插入图片描述
补全上次训练的检查点路径加载,即可发起对话,此时您可以初步判断训练效果了(留坑,后续更新ragas评估)
切换export Tab ,选择上次训练的检查点,填写导出目录(注意:需填写docker镜像内部目录),如果您目录已经映射本地,则可以在本地文件中查看到训练后的safetensors文件 在这里插入图片描述

llamafactory就到此完成,后续会更新借助llama.cpp的量化和ollama部署

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### LLaMa-Factory 使用指南 #### 安装环境准备 为了顺利使用LLaMa-Factory进行模型微调,在Ubuntu环境下需先完成系列准备工作,包括但不限于安装必要的依赖包以及配置开发环境。对于初学者而言,官方提供的新手教程详细介绍了如何在Linux系统中搭建适合于运行该框架的工作站设置[^1]。 #### 模型微调流程概述 通过LLaMa-Factory可以轻松实现对大型语言模型(如LlaMA 3)的定制化调整。具体操作涉及加载预训练权重文件、定义目标任务并准备相应的训练数据集等环节。整个过程中Python脚本起到了核心作用,利用其简洁明了的语言特性来构建完整的机器学习流水线[^2]。 #### 实际案例分享 篇详细的中文版笔记记录了位实践者从零开始直至成功完成基于LLaMa-Factory平台上的模型优化全过程的经历。这份文档不仅涵盖了理论知识讲解还附带了大量的实战技巧指导,非常适合想要深入了解此领域的朋友参考学习。 #### 集成Hugging Face Transformers库 考虑到兼容性和扩展性的需求,许多开发者会选择引入由[HuggingFace](https://github.com/huggingface/transformers)维护的`transformers`库作为辅助工具之。这个开源项目因其广泛的支持范围而备受青睐,能够有效简化诸如迁移学习在内的多种复杂任务的操作难度[^3]。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "path_to_your_model" tokenizer_name = model_name_or_path if model_name_or_path else 'facebook/llama' training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=8, save_steps=10_000, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, ) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值