前言
谨以此文记录踩坑实况,一则日后温习,二则指路旁人
llamafactory微调
1.启动llamafactory可视化页面选择模型
docker部署完成后
#运行此命令进入容器内部
docker exec -it llamafactory /bin/bash
# 启动可视化页面
llamafactory-cli webui
然后在本机访问localhost:7860
语言和需要的模型,在此选择后,模型路径会自动填充,启动训练时会自动向huggingface下载base模型,但由于国内原因,可能无法访问到huggingface,可以选择设置魔搭下载地址
set USE_MODELSCOPE_HUB=1
或者使用本地地址,这边是使用了本地地址 首先在魔搭社区选择需要的文件git 拉取到本地
第一次需要安装git-lfs
git lfs install
然后选择需要的模型地址git clone即可
文件映射
由于我们使用的是docker部署的llamafactory,因此调用模型前,需要将本地的模型文件夹映射到docker镜像中,建议一并设置多个路径用以存放微调后的模型文件,命令行中输入多个映射对即可
docker run -v <本地存放目录>:<容器目录> <镜像名称> <本地存放目录>:<容器目录> <镜像名称>
然后在模型路径中填写该文件在docker镜像的地址
继续选择参数
数据集设置
提示模板一定要选取,不同模型对应的模板也是不尽相同的,如果有自定义格式文件,可导入到镜像中,然后在data_info.json中进行注册,否则无法在列表选择
然后是比较关键的几个参数,对训练结果影响巨大
选择数据集后,学利率可以选择默认5e-5
#学习率
#学习率越低,训练越准确,相应的时间会更长
#对于llama3.1-8b 选择低一点的学习率比较好
#轮数
#训练轮次
#最大样本数
#即为'训练时在提供的每个数据集最多提取多少个样子进行训练'
#数据集较多的情况下建议适当设置更小的参数
训练轮数(!!!)
轮数的设置 目前没有更好的办法,全凭经验对新手是不友好的,比较推荐的方案是设置一个相当大的轮数,在训练过程中关注loss曲线,当曲线越趋近于平滑,说明训练已经接近完成,此时应手动停止训练以避免过拟合
当然也支持命令行调用训练的方式
测试和导出
切换chat Tab
补全上次训练的检查点路径加载,即可发起对话,此时您可以初步判断训练效果了(留坑,后续更新ragas评估)
切换export Tab ,选择上次训练的检查点,填写导出目录(注意:需填写docker镜像内部目录),如果您目录已经映射本地,则可以在本地文件中查看到训练后的safetensors文件
llamafactory就到此完成,后续会更新借助llama.cpp的量化和ollama部署
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓