加固你的Ollama,避免安全风险!实操手册!

一篇阅读超10万的安全通报,相信很多朋友都看到了。这让自己部署Ollama一下子成了高危的事情。

安全无小事,如果是在公网上部署Ollama来用的话,一定要参考公告把相关的措施配置好,防火墙等一定要打开,这其实也都是网工日常工作中的基本操作。

而个人在局域网中部署Ollama之后,要如何做才能更安全呢,来一起看看具体怎么操作吧。

个人局域网中部署的话,因为我们基本上不会把Ollama的服务直接暴露出去,所以相对安全。它受攻击的几率和你安装的其它应用,比如Steam,微信等等受攻击的几率基本一样。

不过还是不能掉以轻心,来看看怎么让自己部署的Ollama更安全吧。

1. 保持Ollama版本的更新(最重要)

因为是内网,所以通过保持版本的更新来避免历史版本中的漏洞是最重要的,现在最新的版本是 0.5.13。通过下面的命令可以查看你Ollama的版本。

ollama --version``ollama version is 0.5.7

可以看到,我这个版本就不是最新的版本。其实Ollama的Windows和Mac版本默认都会打开自动更新。以Windows版为例。

当Ollama发现新的版本之后,会通过图标来提示,在Logo上会有一个蓝色标记,来提醒有新版本了。


右键点击Logo之后,就可以选择“Restart to update", Ollama就会自动运行新版本的安装包,完成更新。

当然,你也可以去ollama.com 手动下载新版本的安装包,来进行覆盖安装,进行手动的升级。

Mac下的Ollama升级也是类似,就不赘述了。

2. 设置OLLAMA_ORIGINS参数

将OLLAMA_ORIGINS参数设为局域网内网址,这个参数是设置Ollama会响应哪里来的跨域请求。如果我们要是让Ollama可以响应局域网中其它主机的访问请求,通常会把它配置成”*“,也就是允许所有的主机访问,如果想要进行限制,就可以指定特定的网段或者IP地址,这样就可以限制只响应这些地址的请求。比如,我的局域网是192.168.1.0这个网段,那就把这个参数设置为:

OLLAMA\_ORIGINS "192.168.1.\*"

但是这个参数在我这里有时好用有时不好用,所以,我还是把它设置成了“*”,来通过下一步来做防护。

3. 设置系统防火墙

通过参数设置是应用层的开关,如果实现更安全的保障,这就需要借助系统的防火墙了。

Windows 如果你用Windows Server在公网配置了Ollama,防火墙的配置也基本是一样的。

在搜索框中写“防护墙”,就可以看到“防火墙和网络保护”的选项

打开后,先确认防火墙已经打开了,然后选择“高级设置”

在防火墙的高级设置中,选择"入站规则”,也就是对于其它主机对你的访问请求进行控制,在这里找到Ollama的规则。

不知道为什么这里是两个,可能跟我装了两次有关?

这两个策略是Ollama安装时自动生成了,规则是允许所有的外来访问。这两条规则不能够修改,所以直接把它们禁用。可以通过点击右键,选择“禁用规则”,或者在右侧的菜单里选择“禁用规则”,都可以。

操作成功之后,就可以看到这两条规则前面的绿色标志没有了。现在所有其它主机都不能访问Ollama了。

如果要指定特定的主机访问,就需要建立一条新的规则,参考下面的步骤来创建   

找到你的Ollama程序

到这里,规则就创建好了

可是现在仍然是所有其它主机都可以访问这台主机的Ollama服务。下面来添加白名单,只允许特定的IP地址的访问。

双击这条策略,或者点击右侧的“属性”,都可以打开这条策略的配置窗口

选择“作用域”

在这里添加IP地址白名单

比如我添加了一个192.168.10.156的主机

选择应用,这条策略就配置成功了。

接下来做个测试,可以看到,只有156这个IP的主机可以访问这台Windows的Ollama服务,其它的不能访问。

Mac OS 自带的防火墙功能比较弱,只有“允许”和“禁止”两个选项,需要借助pfctl服务(也就是package forwarding服务)来进行比较细节的控制。操作都是命令行的,发出来供大家参考。

假设,只允许192.168.10.134这个IP的主机访问Ollama的11434端口,这样就需要配置/etc/cf.conf文件,在文件的最后添加两条内容

pass in quick proto tcp from 192.168.10.134 to any port 11434``block in proto tcp from any to any port 11434

如果需要允许多个IP的话,格式是这样的

pass in quick proto tcp from { 192.168.10.133,192.168.10.134 } to any port 11434``block in proto tcp from any to any port 11434

这里的“quick"是一个标识符,来指示说如果这条满足了,就不进行下面的规则检查了。从而实现了只允许特定IP地址访问的功能。

配置完后,执行下面的命令,就可以实现访问控制了

#加载配置sudo pfctl -f /etc/pf.conf#打开pfctl服务,默认这个服务是关闭的``sudo pfctl -e

不过,Mac OS中,pfctl的服务默认是关闭的,而且每次系统启动的时候会变为关闭状态。所以如果你的Mac是要经常关机的话,记得每次启动执行一下上面的两条命令。或者自己写个加载项,让系统启动的时候自己加载。

所以,装了Ollama也没什么可害怕的,尤其是在自己的内网中,它受攻击的几率和你其它应用受攻击的几率基本是一样的。我们做好防护就可以继续愉快的玩耍了。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### Ollama 私有大模型部署中的安全注意事项 #### 数据加密 为了保护企业敏感信息,在传输和存储过程中应采用强加密标准。这不仅限于静态数据的加密,也包括动态数据即在网络上传输的数据。对于私有化部署而言,确保所有通信都通过SSL/TLS协议来保障安全性[^1]。 #### 访问控制机制 建立严格的访问权限管理制度至关重要。仅授权特定人员拥有操作系统的管理权限以及对训练数据集、测试环境等资源的操作权。同时建议启用多因素认证(MFA),进一步提高账户安全性[^3]。 #### 日志记录与监控审计 持续监测系统活动并保存详细的日志文件有助于及时发现潜在威胁行为模式。定期审查这些日志可以识别异常事件或未遂攻击尝试,并采取相应措施加以防范。此外,还可以设置告警规则以便快速响应紧急情况[^2]。 #### 物理安全保障 考虑到物理层面可能存在的风险因素,比如硬件被盗取或者遭受自然灾害破坏等情况的发生概率虽然较低但是仍然不可忽视。因此要选择具备良好防护设施的数据中心作为托管地点,并考虑冗余备份方案以增强容灾能力。 ```python import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)-8s %(message)s') logger = logging.getLogger(__name__) def log_event(event_type, message): logger.info(f'Event Type:{event_type}, Message: {message}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值