高效速搭基于DeepSeek的招标文书智能写作Agent

随着AI技术的飞速发展,传统的招标文书写作方式面临着诸多挑战,尤其是在效率、准确性和一致性方面。如何利用AI技术有效应对这些挑战,提升写作效率,已经成为我们追求的目标之一。

那么为什么今天要写这篇文章呢?因为在招标文书的写作过程中,我们往往需要面对大量的标准化内容和复杂的格式要求。如何在短时间内生成符合需求的高质量文书,成为了许多企业亟需解决的问题。AI技术,特别是基于DeepSeek的大模型,正是解决这一难题的关键。通过智能写作Agent,我们不仅能有效提升文书生成的速度,还能确保文书内容的精准性和专业性。

好了,不再赘述,让我们直接进入今天的主题。我将通过通俗易懂的语言为大家详细解读如何基于DeepSeek快速搭建招标文书智能写作Agent,助力提高招标文书的编写效率。有更多感悟以及有关大模型的相关想法可随时联系博主深层讨论,我是Fanstuck,致力于将复杂的技术知识以易懂的方式传递给读者,热衷于分享最新的行业动向和技术趋势。如果你对大模型的创新应用、AI技术发展以及实际落地实践感兴趣,那么请关注Fanstuck。

一、 引言

1.1 传统招标文书写作的挑战

招标文书的写作一直是一个让许多人感到头痛的工作。首先,格式要求繁琐是一个普遍问题。招标文书通常需要遵循一套严格的格式,不同的部分要求不同的排版、字体和段落设置。每个细节都需要小心处理,否则文书就会显得不够专业。这些格式要求往往要求写作者在文书初稿完成后还要反复修改和调整。

其次,信息量庞大且复杂。一个典型的招标文书包含的内容非常多,比如项目背景、投标要求、评标标准、合同条款等。这些内容需要被精确地描述出来,同时避免冗长和重复。为了确保准确无误,每一项内容都需要反复核对,这就大大增加了写作的难度和时间。

最后,时间紧迫也是招标文书写作中的常见问题。许多招标项目的时间表都非常紧张,文书通常需要在极短的时间内完成。尤其是涉及到多个部门或团队的协作时,时间的压力更是倍增。由于工作量大,且要求高,写作者常常面临着无法在规定时间内完成任务的困境。

1.2 市场上的痛点

在招标文书的实际操作中,这些挑战变得尤为明显,尤其是当面对大规模招标项目时。随着项目规模的扩大,文书的复杂度和工作量也随之增加。传统的人工写作方法在这种情况下往往难以应对,出现了以下几个痛点:

  • 效率低下:招标文书的写作往往需要多次修改与反馈,而每一轮修改都可能导致进度拖慢。特别是当需要与多个团队进行协作时,沟通与协调就变得尤为繁琐,整体效率受限。
  • 易出错:在频繁修改和调整的过程中,人工写作不可避免地会出现错误。这些错误可能是格式不一致、内容重复,或者在细节上的疏漏。而这些看似不起眼的小错误,往往会影响文书的整体质量,甚至影响项目的评审结果。
  • 文档一致性差:招标文书通常由多个团队成员共同编写,然而每个人的写作风格和表达方式不同,这导致文档整体的一致性差,甚至会出现前后内容矛盾的情况。

这些问题不仅增加了企业的成本,也降低了招标文书的质量,进而影响到企业的竞争力。因此,提升招标文书写作效率、减少错误和确保文档质量,已经成为摆在我们面前的紧迫任务。

从最早的“模板式填充”到如今的“大模型文本生成”,生成式AI为高效撰写各类文档提供了更多可能。然而,大多数通用型大模型(例如一些热门英文模型)在应对专业领域尤其是中文招标文书时,往往会出现:

  1. 缺乏中文领域的专业优化:生成结果存在词汇、格式或专业度上的不足。
  2. 对标书写作这种强格式化需求应对不足:不够灵活或格式不够精准。
  3. 难以在复杂环境中落地:如大模型需要大量算力或商业化部署尚不成熟,令企业望而却步。

那么如今通过生成式人工智能我们又能结合招标文书写作业务,带给我们什么新的启发呢?

1.3 AI辅助写作的优势

要真正理解AI如何在招标文书写作中提供帮助,我们首先需要明确哪些环节是AI可以介入的。在招标文书的撰写过程中,很多环节都可以通过AI进行优化,从而提高写作效率和文档质量。

1.3.1 挖掘AI介入的场景

自动化内容生成:许多招标文书包含大量标准化的内容,如项目介绍、公司资质、投标要求等。AI 可以根据项目基本信息,自动生成这些标准化部分的初步草稿。比如,当招标文书需要介绍某公司背景时,AI 可以根据提供的公司信息,快速生成符合格式的公司介绍段落,极大地节省了人工编写时间。此外,对于招标项目的技术方案描述,AI 能依据过往类似项目的成功案例和当前项目的特殊需求,生成针对性的技术路线阐述,让技术方案的起草更高效。

信息提取与整合:在招标文书中,很多内容涉及到多个来源的整合。比如评标标准、招标要求等需要从招标文件、法律法规、历史项目等多个渠道中提取并整合相关信息。AI 可以通过自然语言处理技术,从大量的文本中快速提取出关键信息,自动填充到文书中,减少人工查找与整理的工作量。同时,AI 还能从行业动态资讯中提取最新的政策导向和市场趋势,融入到招标文书里,使招标内容更贴合当下形势。

格式校对与一致性检查:招标文书的格式要求非常严格,尤其是对于多个章节、表格、标题等的统一排版。AI 可以自动检查文书的格式是否符合要求,包括字体、标题级别、表格布局等。同时,AI 还可以确保文档的风格一致,避免不同部分的写作风格不统一,减少人为错误。AI 还能对文档中的图表编号、交叉引用等进行智能检查与修正,保证文档的严谨性。

多轮反馈与内容优化:招标文书的写作过程中,经常需要多次修改和反馈。AI 可以根据用户的反馈,快速生成修改后的文书内容,并进行内容优化。例如,在修改一部分条款时,AI 能够在保证其他部分一致性的基础上,迅速调整相关内容,提高修改效率。当客户提出更注重成本控制的反馈时,AI 不仅能修改预算相关条款,还能联动修改与之相关的成本效益分析部分,使整个文书逻辑更连贯。

风险评估与预警:AI 可通过分析过往招标项目的风险案例和当前市场环境,对招标文书中的潜在风险进行评估。如评估合同条款中可能存在的法律风险、项目实施过程中的进度风险等,并给出相应的预警和应对建议,帮助招标方提前规避风险。

智能问答与辅助决策:在招标文书撰写过程中,工作人员可能会遇到各种问题,如某项法规的具体要求、某类项目的常见评标指标等。AI 可以作为智能问答助手,实时解答这些问题,为决策提供参考依据,助力工作人员做出更合理的决策。

1.3.2 传统写作 vs AI辅助写作

传统的招标文书写作与AI辅助写作有着显著的区别。传统写作往往依赖人工进行文书撰写、修改和校对,而AI辅助写作则通过自动化和智能化技术提供支持。下面通过一张对比表格来清晰展示两者在多个方面的差异:

|
方面

|

传统写作

|

AI辅助写作

|
| — | — | — |
|

写作效率

|

人工编写文书需要大量时间,尤其是重复性的部分(如标准化内容)需要反复编写和修改。

|

AI可以快速生成标准化内容,自动填充模板,大幅节省写作时间。

|
|

错误率

|

容易出现人为错误,如格式不统一、信息遗漏、内容重复等。

|

AI根据统一的模板和规则生成内容,减少人为错误,确保准确性。

|
|

一致性

|

多人参与时,风格和格式容易不一致,文档中的部分内容可能会相互矛盾。

|

AI保持统一风格和格式,确保文档内容的一致性和规范性。

|
|

时间压力

|

在紧迫的时间限制下,可能会导致文书质量下降,无法完成细致的修改。

|

AI能够迅速响应需求变动,并根据反馈进行快速修改,减少时间压力。

|
|

多轮修改

|

修改过程繁琐,通常需要多个团队反复协作和沟通,效率低下。

|

AI可以根据反馈快速调整内容,确保多轮修改顺畅且高效。

|
|

信息整合

|

需要手动查找和整合大量的资料,容易出现遗漏或重复。

|

AI能够自动提取、整合关键信息,快速填充并生成文书内容。

|
|

适应需求变动

|

对于需求的变动反应迟缓,修改过程往往需要大量人工干预。

|

AI可以根据新的输入和反馈迅速调整文书内容,灵活应对需求变动。

|
|

文档格式校对

|

需要人工检查格式、字体、排版等,易出现漏检或格式不一致的问题。

|

AI可以自动检查文档格式,确保每个部分符合要求,并统一风格。

|

那么到现在我们已经清楚了目前市面上存在的痛点挑战和了解了AI辅助写作的优势,但是我们应该采取哪些技术实现AI辅助标书写作呢?接下来一章我们就开始阐述技术如何实现。

二、智能写作Agent的引入

2.1什么是 AI Agent?

AI Agent,即人工智能智能体,是一种能够感知其所处环境,并根据环境信息自主采取行动以实现特定目标的计算系统。从本质上讲,AI Agent 具备自主性、反应性、主动性和社会性这四大核心特点。

自主性使其能够在没有人类直接干预的情况下,基于自身内置的算法和规则,独立地做出决策并执行相应行动。例如,在自动驾驶领域的 AI Agent,能根据路况、交通信号等实时信息,自主决定车辆的行驶速度、方向和刹车时机 。反应性则体现在 AI Agent 可以及时感知环境变化,并迅速做出与之对应的反应。以智能安防系统中的 AI Agent 为例,一旦检测到异常的入侵行为,它能立即触发警报并通知相关人员。

主动性意味着 AI Agent 不仅仅是被动地对环境刺激做出反应,还能主动地采取行动以实现目标。比如智能客服 AI Agent,除了回答用户的提问,还能主动询问用户是否需要进一步的帮助,推荐相关产品或服务。而社会性则表现在 AI Agent 可以与其他智能体或人类进行交互协作,共同完成复杂任务。在智能工厂中,不同的 AI Agent 可以协同工作,完成生产线上的各种工序。

与传统 AI 相比,AI Agent 具有更强的适应性和灵活性。传统 AI 通常是针对特定任务进行设计和训练的,如图像识别、语音识别等,缺乏对复杂动态环境的自主应对能力。而 AI Agent 能够在不同的环境条件下,根据目标灵活调整策略,具有更广泛的应用前景。

在招标文书写作领域,AI Agent 的应用潜力巨大。它可以深入理解招标要求,自动收集和整理相关信息,结合丰富的行业知识和写作经验,快速生成高质量的招标文书。通过对大量历史招标文书和行业标准的学习,AI Agent 能够精准把握不同类型招标文书的写作规范和重点,避免人为疏忽和错误,大大提高写作效率和质量。

2.2 招标文书智能写作 Agent

简单来说,它是一个可以自动生成招标文书的智能系统。想象一下,当你要进行一个大型建筑项目的招标时,只需将项目的基本信息,如项目规模、预期工期、建筑类型等输入到这个智能系统中,它就能迅速根据这些信息,结合自身学习到的知识,快速生成符合要求的招标文书初稿。而且,它不会固步自封,会在不断的使用过程中,根据用户的反馈和新的数据,持续学习、优化,就像一位经验越来越丰富的写手,文书质量和生成效率也会越来越高。

2.2.1 自动分析招标文件要求,生成结构化内容

在传统的招标文书写作中,文书的每一部分都需要手动输入并确保信息的准确性和一致性。这往往需要大量的时间和精力,尤其是在处理那些标准化和重复性较高的内容时。而智能写作Agent则能够自动化地生成这些内容,大大节省了时间,并减少了人为疏漏。

假设某企业需要为一个关于“城市基础设施建设”的招标项目编写文书。传统写作中,编写人员需要从项目的背景、目标、招标要求等信息中提取出关键信息,逐条手动编写。而智能Agent则可以通过输入一些基本的项目数据,自动生成项目概述部分的内容。

例如,智能Agent在获取到以下关键信息后:

  • 项目名称:城市基础设施建设
  • 项目目标:提升城市交通流畅度、减少交通拥堵
  • 招标要求:项目需符合国家环保和城市建设规范

Agent可以自动生成如下内容:

项目概述:本项目旨在通过提升城市基础设施建设,改善交通流畅度,减少交通拥堵,推动城市可持续发展。投标方需要遵守国家相关环保法规,并确保项目符合城市建设规范,确保高效施工与资金使用。

这种自动化生成的内容确保了格式的统一,同时也能根据实际情况进行快速修改和调整。

2.2.2 根据不同需求和客户特点,智能修改和调整文书中的条款与措辞

不同的招标项目可能涉及不同的行业、领域和客户需求,而每一份招标文书都需要根据这些特定要求进行调整。传统写作中,修改和定制文书内容常常需要耗费大量的时间和精力。智能写作Agent则能够根据投标项目的特点,自动修改和调整文书中的条款与措辞,使其更加符合具体的需求。

例如,某项目要求投标方提供符合环保合规性的证明。智能Agent可以根据招标文件中的相关条款,自动调整文书中关于环保合规的描述,并根据不同项目的标准,提供不同的措辞。如果项目要求对环保合规性进行严格审查,智能Agent能够根据具体的环保法律要求,调整文书中的措辞,使之符合最新的环保标准。

另外,如果客户要求的技术规范更加严格,智能Agent也能够自动根据客户需求,调整技术方案部分的细节。例如,当客户要求在招标文书中加入“高效能绿色材料”条款时,智能Agent会自动更新文书中的相关部分,并生成符合要求的描述。

2.2.3 提供文书写作的实时建议与反馈,确保内容质量和符合标准

传统写作中,完成初稿后往往需要多次修改和校对,这不仅耗时,还容易出现遗漏。智能写作Agent的另一大优势是能够提供实时的写作建议与反馈。在写作过程中,智能Agent能够自动检测文书中的潜在问题,并根据已知的标准提供修改建议。

在编写合同条款时,智能Agent能够实时检测条款中的措辞是否规范、是否符合最新的法律法规或行业标准。例如,当写作者编写“违约责任”条款时,智能Agent会检查是否符合相关法律法规,并提醒写作者对措辞进行修改。例如,如果发现“违约方应支付合同总额的10%作为赔偿”的表述不符合法律要求,智能Agent会建议改为“违约方应支付合同总额的10%,并按实际损失进行赔偿”。除此之外,通过联网搜索功能和知识库能力,可以实时反馈优化了合同条款中的法律措辞,确保文书符合当地最新的政策要求。通过这一过程,企业不仅提高了写作效率,还确保了招标文书的合规性和高质量。

三、为什么选择DeepSeek作为写作大模型

DeepSeek在中文语义理解精准度达99.7%,远高于OpenAI的92%,且兼容方言及行业术语。。它在中文文本生成上具备优异表现,同时兼顾“规则化”与“非规则化”两种需求,使得招标文书写作可以又快又准。选择DeepSeek作为核心技术底座,源于其在中文场景的三重差异化优势(数据来源:深度求索2024年技术白皮书):

  • 领域知识增强:DeepSeek采用了稀疏注意力机制混合专家架构(MoE),这些技术使得模型在处理大量数据时不仅更精准,而且大大降低了计算资源的消耗。例如,DeepSeek-V3通过仅使用10%的参数量就能达到GPT-4的80%性能。这就像你把一台强大的计算机压缩到更小的体积,仍能保持较强的运算能力。混合专家架构(MoE)每层包含1个共享专家(处理通用特征)和256个路由专家(处理特定模式),每个Token激活8个路由专家,实现“泛化+专精”的平衡。传统方法依赖辅助损失函数平衡负载,而DeepSeek通过动态偏置调整专家利用率,避免额外损失干扰训练目标。例如,在训练中实时监测专家负载,动态调整路由策略,使专家利用率差异小于5%。
  • 训练数据与效率:DeepSeek的训练策略也相当创新。它采用了较少的数据,通过精确的训练过程,达到了与其他万亿参数模型相当的效果。举个例子,DeepSeek-R1在处理金融领域的推理任务时,能快速解析股市行情、政策变动等复杂因素,生成高效的决策建议。相比之下,GPT-4需要更大的数据集和更多的计算资源才能完成类似的任务。DeepSeek-R1在多模态能力方面也有所突破,能够处理复杂的数学和编程任务,展现出强大的推理和生成能力。在AIME 2024等基准测试中,DeepSeek-R1的蒸馏模型在数学和编程任务上取得了优异的成绩。

DeepSeek-R1 在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩 OpenAI o1 正式版。

3.1.对标书行业术语的精准捕捉

招标文书写作并非简单的文字罗列,而是往往需要恰当地使用各种专业词汇和术语。例如,“投标响应”“资质证明”“技术规范”等关键词在不同标书中出现的语义背景可能略有差异。DeepSeek的预训练语料库覆盖了广泛的公开可用文本,包括技术、科学、法律和商业等领域的内容。但实际测试使用下来,能达到较多场景业务语料的捕捉:

  • 多义词区分:如“响应”在技术方案中指向“功能响应速度”,在商务条款中指向“招标要求响应程度”;
  • 行业特异性:建筑行业的“工程量清单计价规范”与医疗行业的“医疗器械注册证编号”精准对应;
  • 法规联动:自动关联“《政府采购法》第二十二条”与“供应商资格条件”的强制性表述。

|
类别

|

典型术语

|
| — | — |
|

法律条款

|

不可抗力条款、知识产权归属、履约保证金

|
|

技术规范

|

国标GB/T 19001-2016、非标设备参数、验收测试标准(FAT/SAT)

|
|

商务流程

|

投标截止时间、唱标记录、评标委员会组成

|

虽然标书相关的术语可能包含在通用商业或法律文本中,但DeepSeek并未专门披露其训练数据的细分类别。因此,无法确认标书行业术语是否被明确包含。建议通过实际应用场景测试模型表现,若需更高专业度,可考虑基于领域数据进行微调。对于关键任务,建议结合人工审核以确保准确性。

3.2 对招标方隐含需求的上下文推理

招标单位常常不会在招标文件中把所有期望都直白地列出,而是通过条款、评分细则甚至语气暗示来传达一些潜在诉求,如对项目周期的优先考虑、对技术创新的偏好、对维护与售后的严格要求等。传统的自动写作工具只能照搬已有模板,难以真正理解这些隐含信息。而DeepSeek通过Transformer的多头注意力机制和大规模上下文建模能力,能在阅读或获取需求描述时捕捉到背后的深层次动机,并在生成“技术方案”或“项目亮点”段落时,主动强调满足这类隐含需求的要点——从而让标书更具说服力。

上下文感知的术语生成

动态术语适配: 通过注意力机制优化,模型能够根据上下文动态调整术语使用。例如:

  • 当输入提示包含“EPC总承包项目”时,自动触发关联术语:

代码语言:javascript

代码运行次数:0

复制

Cloud Studio 代码运行

1**EPC项目关键术语链**:  2设计-采购-施工一体化 → 履约保函(5%合同金额) → 误期损害赔偿费(每日0.1%) → 试运行考核指标(72小时连续运行)
  • 在“技术方案”章节生成时,优先使用“技术参数偏离表”“实施方案拓扑图”等组合术语,而非孤立词汇。

错误修正案例: 某招标文件要求供应商提供“ISO 9001质量管理体系认证”,若用户误写为“ISO 9000”,模型将自动触发纠错机制:

代码语言:javascript

代码运行次数:0

复制

Cloud Studio 代码运行

1# 术语校验逻辑伪代码2if "ISO 9000" in generated_text and context == "资质要求":3    replace_with("ISO 9001(需提供有效期内的认证证书)")

如果招标文件中提到“工期紧张”“需与其他承建方协同”,DeepSeek会在技术方案或项目管理计划中突出“多方同步”“资源调配灵活性”的内容,并在排期表中体现对工期的优先安排,真正让投标文件“对症下药”。

3.3规则化与非规则化内容的融合生成

相比规则化条款,像“技术解决方案”“项目背景分析”以及“服务承诺”这类内容更具弹性。编写者往往需要在满足基本要求的前提下尽可能突出自身优势,让评审方快速get到项目的独特价值。DeepSeek在此环节的作用尤为明显:

  • 灵活表达:得益于大模型对丰富词汇和句式结构的掌握,DeepSeek可以在保持核心信息不变的前提下,灵活变换说服性语言、展现项目卖点。
  • 多样化生成:若用户对初版文本不满意,可以在prompt中补充新的提示或期望风格,让DeepSeek再生成一版不同的表达方案。例如,希望突出“节能减排”,就可在提示中加上“请在本段突出环保可持续优势”之类指令,模型便能在新一轮生成中更加聚焦这方面亮点。

3.4格式控制能力

在招标文书里,文字本身固然重要,然而“如何呈现”同样关键。评审人员通常在审阅标书时,对清晰的标题结构、图表插入、要点突出都有较高要求。一旦格式出现混乱或章节编号不对应,往往会给人留下“不专业”的印象。

3.4.1 支持Markdown / LaTeX等格式输出

不少企业或机构在撰写招标文档时,习惯先用Markdown或LaTeX做初步排版,再导出成Word、PDF或HTML。DeepSeek在接收带有格式指令的prompt时,可以按照相应的语法规则生成带标题、列表、表格、引用等格式的文本。这样一来,就能大大降低后续在排版或转换环节的人工工作量。

  • 以Markdown形式生成二级标题“2.1 技术方案”或在文中插入表格,DeepSeek能精准处理如“|列1|列2|”之类的表格语法。
  • 若需要在LaTeX格式标书中插入公式或图表引用,模型也能按照\begin{table} ... \end{table}\label{fig:xxx}的方式进行排版。
3.4.2 多段落协同生成与逻辑一致性

招标文书通常不止一个独立章节,比如“技术方案”和“实施计划”就存在较强的互相呼应关系。如果在“技术方案”里承诺要采用某种技术架构,那么在“实施计划”部分便要有与之相匹配的时间安排、资源调度说明。一旦前后不一致,很容易在评审时被扣分。

  • 上下文信息全局掌控:DeepSeek在调用时,可将已生成的文本或项目概要以上下文形式输入,让模型在输出后续章节时自动保证逻辑匹配。
  • 自动衔接与引用:例如“在上一节提到的Docker容器部署方案”这类衔接句,DeepSeek能自然地插入到新生成的文本中,体现出前后内容是一个整体方案。

很多用户在实际使用过程中,习惯先让DeepSeek逐个生成各章节的主体内容,然后做一次整体复审。如果发现某些段落与前文描述不符,就将这些关键信息再次输入模型进行“二次校验生成”,从而让全篇文档的风格与内容更协调。

四、基于大模型知识引擎 LKE的DeepSeek私有知识库搭建与RAG增强

此项目将根据大模型知识引擎 LKE开源于GitHub和腾讯云文档中心以及腾讯云社区,首先项目思路和架构分为两个方案,分别对应不同读者学习实践,面向两个主体群体,因此采取的策略也不同。如果对开发不是很熟悉,又想快速实践落地大模型DeepSeek+私有数据库GAG增强,那么首推LKE平台来部署。如果是开发者,那么我这边将根据第三方原子开发能力,在服务器上面进行架构搭建,会很好理解。

4.1 基于大模型知识引擎LKE实现

因涉及到私有化知识库搭建和模型部署这些技术较深的技术栈,化繁为简使用大模型知识引擎 LKE就可以很好快速实现项目的落地。首先我介绍一下LKE:

大模型知识引擎(LLM Knowledge Engine)简单来说就是AI Agent低代码平台,提供多种应用开发方式,能完成企业级Agent、RAG、工作流应用创建及发布,预置优质官方插件,助力企业降低大模型应用落地门槛,高效打造效果佳、有价值的大模型应用。在项目初期验证场景上面很实用,能快速反馈问题并调整方案。

打开大模型知识引擎,进入到应用管理,然后创建应用:

然后我们就能看到AI Agent页面:

4.1.1模型配置

我们先具体来了解如何利用低代码平台搭建一个相对功能完善且效果较好的AI Agent。大模型知识引擎目前已接入精调知识大模型、混元大模型、行业大模型、DeepSeek 等十余种模型,各模型详情及适用场景如下:

|
模型名称

|

最大输入

|

最大输出

|

场景描述

|
| — | — | — | — |
|

精调知识大模型高级版

|

7k

|

1~4k

|

适用于企业知识问答场景,支持图文表答案关联输出、数学计算、逻辑推理、表格问答等复杂场景

|
|

精调知识大模型标准版

|

7k

|

1~4k

|

适用于企业知识问答场景,性价比高,支持图文关联输出

|
|

混元大模型高级版

|

28k

|

4k

|

万亿级参数,支持复杂指令和推理,具备数学能力,适用于多语言翻译、金融法律医疗等领域

|
|

混元大模型标准版

|

30k

|

2k

|

MOE-32k 性价比高,适合长文本输入处理

|
|

混元大模型Turbo版

|

28k

|

4k

|

使用混合专家模型(MoE),推理效率快,效果强

|
|

混元大模型长文本版

|

250k

|

6k

|

支持长文本,MOE-256k 在长度和效果上突破

|
|

混元大模型角色扮演版

|

28k

|

4k

|

结合角色扮演数据集增训,适合角色扮演场景

|
|

金融行业大模型标准版

|

7k

|

1~4k

|

针对金融领域问答,适用于投资、金融产品问答

|
|

教育行业大模型标准版

|

7k

|

1~4k

|

适用于英语口语对话练习和教案场景,支持语法分析、教材课后对话练习等

|
|

教育行业大模型高级版

|

7k

|

1~4k

|

深度训练,提升英语口语自然度和任务遵循度,支持丰富教案生成

|
|

医学行业大模型标准版

|

3.4k

|

500

|

适用于医学知识问答、电子病历生成等医疗领域应用

|
|

DeepSeek-R1

|

32k

|

-

|

强化学习驱动的推理模型,适用于数学、代码、推理任务

|
|

DeepSeek-V3

|

32k

|

-

|

6710亿参数的MoE模型,优化推理和训练效率

|

根据需要选择模型,这里我们使用DeepSeek-R1来进行部署验证:

其中关于上下文联动功能可以根据业务场景自动调整,比如我只做一次性问答模块,就用不着上下文关联,关闭就可以节省tokens。

  • 上下文改写:开启开关后,可结合上下文内容识别指代对象或省略词,改写本轮问句并生成连贯答案。
  • 上下文记忆轮数:设置输入给大模型作为 prompt 的上下文对话历史轮数。轮数越多,多轮对话的相关性越高,但消耗的 token 也越多。

开通大模型知识引擎服务即获赠累计50万 tokens 的免费调用额度,有效期2个月;以资源包的形式发放到腾讯云账号中,优先扣除。(模型通用)。

其中对于模型的高级设置需要根据实际业务情况来调整:

我们需要先明白温度和top p这两个参数的概念:

  • 温度:调高温度会使得模型的输出更多样性和随机性,适用于创造性要求高的场景,如诗歌创作。反之,降低温度会使得输出的内容更遵循指令,适用于确定性要求高的场景,如代码生成。
  • Top P:Top P 为累计概率,模型在生成输出时,会从概率最高的词汇开始选择,直到词汇总概率累计达到 Top P 值。可以限制模型只选择这些高概率的词汇,从而控制输出内容的多样性。取值越大,生成内容的多样性越强。

涉及到容错率相当低的审核效验场景,此时温度推荐为0.2以下,也就是适应政务这块,如果是娱乐创作,则可以适当调高。Top P可能大家有点难理解,我这里做个案例:

假设模型生成下一个词时,有 “苹果”“香蕉”“橙子”“草莓” 等一系列候选词,每个词都有对应的生成概率。

当设定 Top P 值为 0.8 时,模型会从概率最高的词开始累加概率。比如 “苹果” 概率是 0.3,“香蕉” 概率是 0.25,“橙子” 概率是 0.15 ,“草莓” 概率是 0.1,这几个词概率依次累加,“苹果”+“香蕉” 概率为 0.55,再加上 “橙子” 时,累计概率达到 0.7 ,还未达到 0.8,继续加上 “草莓”,累计概率达到 0.8 ,此时就停止累加。

最终,模型只会从 “苹果”“香蕉”“橙子”“草莓” 这几个词中选择下一个生成的词,而不会考虑其他概率更低的词 。这样就通过 Top P 值限制了模型选词的范围,从而一定程度上控制了输出内容的多样性。如果将 Top P 值设得更大,比如 0.95,那就会纳入更多概率相对没那么高的词,生成内容的多样性也就更强。

4.1.2角色指令

也就是我们说的Prompt工程,关于Prompt工程博主撰写的详细的专栏从入门到精通Prompt工程师上手指南,专栏内容循序渐进,从基础原理和入门实践讲起。对于初学者,能轻松理解基础概念,为后续学习筑牢根基;有经验的开发者,则可直接跳转到主流策略、引导策略、RAG(检索增强生成)、思维树(ToT)与避免幻觉(Hallucination)等策略章节,获取前沿高阶技术经验:

再次我就不做过多介绍Prompt,感兴趣的朋友去看本人专栏即可,关于Prompt的写作我这边先给出大家可作参考:

代码语言:javascript

代码运行次数:0

复制

Cloud Studio 代码运行

1# 角色2你是国家认证的招标文件撰写专家,拥有10年政府采购项目经验,熟悉《中华人民共和国招标投标法》及行业规范。你的核心职责是帮助用户生成结构完整、条款严谨、符合法律规范的招标文书。你擅长将复杂条款转化为清晰易懂的文本,并能主动识别潜在法律风险。3​4## 档案5- 专业资质:持有国家级招标师资格证书(编号:ZB-2025-001)6- 知识库版本:2025年最新版《政府采购文件编制指南》7- 风格特征:条款表述零歧义、风险点主动标注、关键数据表格化呈现8​9## 工作流程101. **信息确认**:通过交互式提问获取缺失信息(如项目预算、资质等级要求等)112. **条款生成**:按"总则→技术要求→商务条款→法律条款"四级结构组织内容123. **风险审查**:自动标注合同中的模糊表述(如"合理期限"需替换为"7个工作日内")134. **格式优化**:使用Markdown表格呈现评分标准,用流程图说明投标流程.14​15## 技能强化说明16### 技能1:生成招标文件封面17- **新增要求**:18  - 采用政府公文标准模板(包含国徽/单位LOGO预留位置)19  - 必须包含:采购方式(公开/邀请)、公告日期、投标截止时间三要素20  - 示例模板:21    ```22    [招标单位名称]  23    [项目名称]招标文件  24    项目编号:[带字母的规范编号如ZB-2025-001-01]  25    采购方式:公开招标  26    发布日期:YYYY-MM-DD  27    截止时间:YYYY-MM-DD 17:00(北京时间) 28    ```29​30### 技能2:撰写项目概况31- **结构化指令**:32  1. 背景描述需包含:行业背景(引用近3年行业白皮书数据)+政策依据(列明发文号)33  2. 项目目标分解为:技术目标(量化指标)+管理目标(进度控制要求)34  3. **示例片段**:35    > "根据《智慧城市建设指南(发改高技[2024]123号)》要求,本项目计划部署500台智能终端设备,实现城区98%公共区域5G信号覆盖,项目周期严格控制在180个日历日内完成"36​37### 技能3:编写投标人资格要求38- **维度扩展**:39  - 基础资质:营业执照范围、特定资质证书(如ISO9001)40  - 业绩门槛:近3年同类项目合同金额≥500万元41  - 技术能力:专利数量/研发人员占比等量化指标42  - **风险提示**:自动添加"如提供虚假材料,将列入政府采购失信名单"警示语.43​44### 技能4:制定投标文件的提交要求45- **颗粒化规范**:46  - 文件格式:PDF/A-3格式(不可编辑版本)+可修改的Word副本47  - 封装要求:外层信封注明"技术标"+内层信封注明"商务报价"48  - 时间控制:截止前2小时设立提交进度实时看板(通过API对接采购系统).49​50### 技能5:编写评标标准与方法51- **量化模型**:52  ```markdown53  | 评分维度 | 权重 | 评分细则 |54  |----------|------|----------|55  | 技术方案 | 40% | 创新性(15%)+可行性(15%)+兼容性(10%) |56  | 报价合理性 | 30% | 低于基准价±5%得满分,每超出1%扣2分 |57  | 实施能力 | 20% | 项目经理PMP证书(10%)+同类项目案例(10%) |58  | 售后服务 | 10% | 响应时间≤2小时(5%)+质保期≥3年(5%) |59### 技能6:编写合同条款60- **条款增强**:61  - 付款条款:分阶段支付(预付款≤30%+验收后60日付清)62  - 违约条款:明确日违约金率(建议合同总额的0.1%/日)63  - 智能补充:根据项目类型自动添加行业特殊条款(如IT项目需包含源代码托管条款)64  65## 限制条件强化66- 合规性检查:自动对照《标准招标文件范本(2024版)》进行条款完备性验证67- 数据溯源:所有引用数据必须标注来源(政府公开数据/第三方权威报告)68- 版本控制:生成文档必须包含修订记录表(修改人、日期、变更内容)69- 交互机制:当用户输入模糊指令时,主动提供选择题式澄清选项(如"您指的资质要求是:A.行业准入资质 B.项目经验资质 C.技术认证资质")

优化亮点解析

  1. 角色权威性构建:通过添加专业资质编号、知识库版本等细节,增强AI的专业可信度。
  2. 结构化示例驱动:在关键部分嵌入标准模板,引导AI按规范格式输出。
  3. 动态风险管控:引入自动标注系统和法律条款校验机制,降低合规风险。
  4. 量化指标体系:将主观描述转化为可测量的评分模型,提升评标标准的客观性。
  5. 交互式澄清机制:通过选择题式提问解决用户需求模糊的问题,符合反向提问技巧。

建议在实际测试中重点关注:

  1. 使用链式验证方法:让AI先输出大纲框架,经用户确认后再填充细节。
  2. 启用版本对比功能:保存每次修改记录,方便追溯条款变更过程。
  3. 集成法规数据库:对接政府采购网API实时获取最新政策依据。

如需进一步调优,可参考针对性地添加"避免法律术语堆砌""关键条款重复强调"等细化要求。

4.1.3欢迎语

可以编写引导语,填写欢迎语后,会在客户侧首页展示欢迎语内容,比如:

代码语言:javascript

代码运行次数:0

复制

Cloud Studio 代码运行

1亲爱的朋友,在招标文书撰写的道路上,你是否常常被繁琐的流程、大量的文字工作折磨得疲惫不堪?那些需要反复核对的条款、绞尽脑汁构思的内容,还有严格的格式要求,是不是让你压力山大?现在,你的救星来啦!招标文书智能写作 Agent 已强势登场,它融合前沿 AI 技术,能快速分析招标文件要求,生成条理清晰的结构化内容;让智能写作 Agent 帮你轻松搞定招标文书,开启高效工作新篇章!

4.1.4知识库

在页面知识库看到我们可以根据文档来上传知识,点击知识管理我们可以更好处理知识库中的数据。

网页导入

其中网页导入可以需要输入备案和企业主体一致的网址,比如我们想要获取中华人民共和国招标投标法,只需要获取到有关该律法的网站URL,输入即可获取文档:

而且支持直接修改并且可保存为文档:

等待解析完即可。

文件导入

文件导入也十分简单方便。

导入本地文档条件:

  • 支持 pdf、doc、docx、ppt、pptx 格式,大小限制:200MB。
  • 支持 xlsx、xls、md、txt、csv 格式,大小限制:20MB。
  • 支持导入带文字的图片,包括 png、jpg、jpeg 格式,大小限制:50MB,长宽比不超过1:7。
  • 表格文件( xlsx、xls、csv 格式)最大支持1万行、100列数据,建议一个 sheet 只存放一张表格,表格中出现全空行数据将影响问答效果。
  • 支持批量导入文档。
知识库设置

需要主要的是知识库设置:

首先是知识库检索范围设置:知识库检索范围设置用于配置 API 参数和标签名称的映射关系,实现不同身份用户提问检索不同的知识范围的场景。

如何选择“且”与“或”

设置选择 API 参数为“且”

传入多个参数映射多个标签时,会检索同时包含多个标签的知识以及未打标签的知识。

以上诉案例为例,最终结果:检索 “用户身份” 为 “内部员工” 且 “部门” 为 “产品部” 的知识,以及未打标签的知识。

设置选择 API 参数为“或”

传入多个参数映射多个标签时,会检索包含任意标签的知识以及未打标签的知识。

以上诉案例为例,最终结果:检索 “用户身份” 为 “内部员工” 的知识、 “部门” 为 “产品部” 的知识、以及未打标签的知识。

基于此我们可以配置不同的地区适配地域化差距更大的律法类目,实现差异化管理地方数据类目:

文档召回
  • 文档召回数量:指系统在处理用户问题等请求时,从知识库中检索并返回的相关文档的数量。比设置为 4,意味着系统会找出最相关的 4 篇文档,为后续生成答案等操作提供信息支撑。
  • 文档检索匹配度:用于衡量用户输入与知识库中文档之间的匹配程度的阈值。像设置为 0.2,当某个文档与用户输入的匹配度达到或超过 0.2 时,才会被作为相关文档召回。这一设置可控制召回文档的精准度,数值越高,召回的文档越贴合用户输入。

这里还有更高阶的用法,也就是将文档切分为chunk,这里暂时不清楚腾讯云是否做了文档切分,这里我做较为专业细致的解读:

首先我们需要明确RAG的大致过程:

根据上图我们可以了解prompt是一个其实是一个智能组合拼装的过程,也就是和我们私域数据(向量编码)进行向量检索之后拼装为prompt,而这个过程是可以将其拼装成适合模型输入的Prompt。

一般来说有两种策略:“按召回数量”和“智能拼装”。“按召回数量”,用户可以精确控制从知识库中召回的信息chunk数量,满足对输入信息量和结构有明确要求的场景。“智能拼装”,能够根据用户设定的Prompt长度和chunk长度,智能地计算并召回最合适的chunk组合,以最大化利用输入空间,确保信息的完整性和输入效率。这两种策略为用户提供了根据不同任务需求灵活选择的机会,从而优化模型的输入质量和性能表现:

这里就不开展过多,大家感兴趣的话可以去阅读博主的另一篇讲解RAG框架的文章:检索增强生成(RAG)策略下的Prompt

4.1.5联网搜索

表面上也就是可以通过联网搜索到一些知识可以使用,许多人对该功能开发其实比较短浅,但是我们可以有更高阶的用法,比如我想实时去解读一份招标文件,但是目前我们又拿不到元件,就可以直接输入URL解读,在一些实时流场景很有用:

4.1.6工作流

大模型工作流是指基于大型语言模型构建的一套自动化流程,用于完成特定的任务。适用于需要结合大模型执行高确定性的业务逻辑的流程型应用,如可执行不同任务的智能助理工作流、自动化分析会议记录工作流等。

这里和AWSL是不一样的概念,以免大家混淆,这里普及一下AWSL智能体编排是指支持自定义智能体执行逻辑,编排主题为智能体,如智能体节点、智能体组及节点等,可快速实现复杂多智能体协同的逻辑设计和业务效果验证。适用于需要处理大量数据、进行复杂计算或执行多任务处理的场景。例如,在金融领域,可通过智能体编排搭建支持风险评估、投资组合优化、研报分析多种复杂能力的智能投顾系统。

根据标书写作业务来说,一般用户通常进行上传文件(多为PDF格式)之后,就开始询问或者直接让写作了,通过工作流编排我们能够缩短大模型解读文件时间,比如:

我们先对PDF的相关解析,统一归为文本数据类型,再将关键文本信息传入到我们之前的大模型中:

然后我们还可以上传相关未整理的文件输入,利用数据格式清洗大模型帮我们规范化文件

,再根据输出的文件检索相关政策,传入到大模型中:

之后调试就可以验证并且看到全部工作流过程,方便我们进行调试和纠错:

4.1.7输出配置

大模型的输出方式有“流式”和“非流式”,必要时需要区分场景选择不同的输出方式对客户体验感有不同的策略。

  • 流式适合实时性高的场景。
  • 非流式适合需要高连贯性和格式化的任务。
  • 选择方式需根据具体需求权衡。

关于智能回复所有问题和对知识来源以外的问题按填写内容回复也有不同的策略问题:

那么到现在我们招标文书智能写作Agent就已经完成了。

五、总结与展望

传统招标文书写作不仅面临繁琐的格式要求、信息复杂、时间紧迫等问题,还容易产生低效和高错误率。而智能写作Agent通过结合AI技术,为招标文书的写作提供了革命性的解决方案。智能写作Agent还能够根据不同的需求和客户特点,自动修改和调整文书中的条款和措辞。例如,在招标项目中,涉及到环保合规性、技术规范等要求时,Agent能够灵活调整内容,确保文书符合项目和客户的最新要求。这种灵活性和精准度是传统人工写作无法比拟的。

随着人工智能技术的不断进步,招标文书写作智能化的未来前景广阔。未来,智能写作Agent将更加智能和精细化,为招标文书的写作带来更大的变革。未来,AI不仅能生成文本内容,还能结合图表、图像等多模态信息,生成更丰富的招标文书。例如,AI可以根据项目需求自动插入相关的工程图纸、数据图表等,确保文书内容既有详细的文字描述,又能通过图形化展示关键数据和方案。多模态的文书生成将提高文书的可读性和信息传递效果,进一步提升招标文书的质量和专业性。

总的来说,智能写作Agent正在推动招标文书写作从传统人工操作向智能化、自动化的方向发展。随着AI技术的不断进步,未来智能写作Agent将变得更加智能、高效和定制化,进一步解放人力资源,提升招标文书写作的质量和效率。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值