Special Topics - The Kalman Filter (1 of 55) What is a Kalman Filter-_哔哩哔哩_bilibili
1. 整体的流程图
初始化: 初始状态量、初始不确定矩阵
预测: 根据运动学模型,对状态量和不确定矩阵进行预测
观测:通过传感器测量得到新的观测状态
更新:对比预测状态和观测状态,计算卡尔曼增益,计算新的状态量,更新不确定性矩阵
循环: 如上的预测、观测、更新是一个循环进行的过程,系统的状态量会越来越接近真值。
2. 状态变量的定义
3. 位置、速度 、加速度一维
运动模型
观测信息
4. 位置,速度, 加速度,二维
5. 卡尔曼增益
因为运动模型过程中存在不确定性,传感器也存在一定的不确定性,卡尔曼增益就是评估这两种不确定性的权重,用于后续的状态和不确定性的更新
6. 方差,协方差
7. 预测、观测、更新、循环