卡尔曼滤波

卡尔曼滤波器是一种优化状态估计的算法,通过初始化、预测、观测和更新四个步骤,不断校正系统状态,使其逼近真实值。它利用运动模型和传感器数据,结合卡尔曼增益来处理不确定性。该过程涉及状态变量定义,如位置、速度和加速度,以及一维和二维的运动模型。同时,滤波器通过调整方差和协方差来量化不确定性。
摘要由CSDN通过智能技术生成

Special Topics - The Kalman Filter (1 of 55) What is a Kalman Filter-_哔哩哔哩_bilibili
1. 整体的流程图

初始化: 初始状态量、初始不确定矩阵 

预测: 根据运动学模型,对状态量和不确定矩阵进行预测

观测:通过传感器测量得到新的观测状态

更新:对比预测状态和观测状态,计算卡尔曼增益,计算新的状态量,更新不确定性矩阵

循环: 如上的预测、观测、更新是一个循环进行的过程,系统的状态量会越来越接近真值。

2. 状态变量的定义

3. 位置、速度 、加速度一维

运动模型

 

 观测信息

4. 位置,速度, 加速度,二维

 

 5. 卡尔曼增益

因为运动模型过程中存在不确定性,传感器也存在一定的不确定性,卡尔曼增益就是评估这两种不确定性的权重,用于后续的状态和不确定性的更新

6. 方差,协方差

7. 预测、观测、更新、循环

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值