1.1 语言计算:文本和单词
搜索文本
(1)词语索引视图:显示一个指定单词的每一次出现,连同一些上下文一起显示。使用concordance(‘xxx’)方法。
(2)找出现在相似上下文的词,使用similar(‘xxx’)方法。
(3)获取两个或两个以上的词的共同上下文,使用common_contexts([])方法。
(4)离散图:判断词在文本中的位置,显示从文本开头算起它前面有多少个词,使用dispersion_plot([])方法。(也需要安装numpy的matplotlib包)离散图可以用来词语用法模式,随时间推移语言使用上的变化。
(5)在nltk3中没有了generate这个产生随机文本的方法。
计数词汇
(1)使用len获取长度。
(2)使用set函数去除重复的词,得到词汇表。
(3)词类型:指一个词在一个文本中独一无二的出现形式或拼写,标点符号不算。
(4)文本词汇丰富度测量:即每个词平均被使用的次数,也就是文本总词数除以词汇表长度。
(5)count方法计数特定词在文本中出现的次数。
1.2 近观Python:将文本当作词链表
链表
ÿ