蓝桥杯_算法提高_学霸的迷宫(BFS方法)

问题描述
  学霸抢走了大家的作业,班长为了帮同学们找回作业,决定去找学霸决斗。
但学霸为了不要别人打扰,住在一个城堡里,城堡外面是一个二维的格子迷宫,要进城堡必须得先通过迷宫。
因为班长还有妹子要陪,磨刀不误砍柴功,他为了节约时间,从线人那里搞到了迷宫的地图,准备提前计算最短的路线。
可是他现在正向妹子解释这件事情,于是就委托你帮他找一条最短的路线。
输入格式
  第一行两个整数n, m,为迷宫的长宽。
  接下来n行,每行m个数,数之间没有间隔,为0或1中的一个。0表示这个格子可以通过,1表示不可以。
假设你现在已经在迷宫坐标(1,1)的地方,即左上角,迷宫的出口在(n,m)。
每次移动时只能向上下左右4个方向移动到另外一个可以通过的格子里,每次移动算一步。数据保证(1,1),(n,m)可以通过。
输出格式
  第一行一个数为需要的最少步数K。
  第二行K个字符,每个字符∈{U,D,L,R},分别表示上下左右。如果有多条长度相同的最短路径,选择在此表示方法下字典序最小的一个。
样例输入
Input Sample 1:
3 3
001
100
110

Input Sample 2:
3 3
000
000
000
样例输出
Output Sample 1:
4
RDRD

Output Sample 2:
4
DDRR
数据规模和约定
  有20%的数据满足:1<=n,m<=10
  有50%的数据满足:1<=n,m<=50
  有100%的数据满足:1<=n,m<=500。

import java.util.ArrayDeque;
import java.util.Scanner;
public class Main {
    private static int n;
    private static int m;
    private static char[][] mat;
    private static ArrayDeque<Node> queue=new ArrayDeque<Node>();
    private static boolean[][] hasVisited;
    private static String minSteps;
    private static  int minStepCount=Integer.MAX_VALUE;
    private static boolean isFinished=false;
    private static char[] direction={'U','D','R','L'};
    private static int[][] dir=new int[][]{{-1,0},{1,0},{0,1},{0,-1}};

    /**
     * @param args
     */
    public static void main(String[] args) {
        // TODO Auto-generated method stub
        Scanner sc=new Scanner(System.in);
        n=sc.nextInt();
        m=sc.nextInt();
        mat=new char[n][m];
        hasVisited=new boolean[n][m];
        for(int i=0;i<n;i++){
            mat[i]=sc.next().toCharArray();
        }

        bfs();

        System.out.println(minStepCount);
        System.out.println(minSteps);


    }

    private static void bfs(){
        queue.offer(new Node(0,0,"",0));
        while(!queue.isEmpty()){
            Node node=queue.poll();
            hasVisited[node.x][node.y]=true;
            if(node.x==n-1&&node.y==m-1){
                isFinished=true;            
                if(minStepCount>node.stepCount){
                    minStepCount=node.stepCount;
                    minSteps=node.steps;
                }else if(minStepCount==node.stepCount&&minSteps.compareTo(node.steps)>0){
                    minSteps=node.steps;
                }
                continue;
            }

            if(isFinished){
                if(node.stepCount>=minStepCount){
                    continue;
                }
            }

            for(int i=0;i<4;i++){
                Node newNode=new Node(node.x+dir[i][0],node.y+dir[i][1],node.steps+direction[i],node.stepCount+1);
                if(check(newNode)){
                    queue.offer(newNode);
                }
            }

        }
    }
    private static boolean check(Node node){
        if(node.x==-1||node.y==-1||node.x==n||node.y==m){
            return false;
        }else if(hasVisited[node.x][node.y]){
            return false;
        }else if(mat[node.x][node.y]=='1'){
            return false;
        }else{
            return true;
        }
    }
}

class Node{
    int x;
    int y;
    String steps;
    int stepCount;
    public Node(int x,int y,String steps,int stepCount){
        this.x=x;
        this.y=y;
        this.steps=steps;
        this.stepCount=stepCount;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值