差值与逼近(实验二)

p.s 文末附试验测试工程下载链接

拉格朗日插值法(封装函数)

函数接口
double LagrangeInterPol(double arrX[],double arrY[], int n, double x)

其中arrX和arrY表示待插值数据点,n表示数据点个数,x表示待求点,return返回所求点的值。

实现代码
#include "LagrangeInterPol.h"
#include "vetMtxBase.h"
double LagrangeInterPol(double arrX[], double arrY[], int n, double x) 
{
   
	double yResult = 0.0;
	double *LValue = newVector(n);         //LValue[n]存放的是每次求解的插值基函数的在x处的值 
	int k, m;	                           //循环上下标变量k,m
	double temp1, temp2;    	           //插值基函数中的上下累乘temp1,temp2
	//计算各基函数的值
	for (k = 0; k < n; k++)
	{
   
		temp1=1.0;
		temp2=1.0;
		for(m=0;m<n;m++)
		{
   
			if(m==k)
				continue;
			temp1*=(x-arrX[m]);
			temp2*=(arrX[k]-arrX[m]);
		}
		LValue[k]=temp1/temp2;
	}
	//基函数值与y各元素相乘再求和
	for (int i = 0; i < n; i++)
	{
   
 		yResult+=arrY[i]*LValue[i];
	}
	deleteVector(LValue); 
	return yResult;
}

牛顿插值法(封装函数)

函数接口
double NewtonInterPol(double arrX[], double arrY[], int n, double x)

其中arrX和arrY表示待插值数据点,n表示数据点个数,x表示待求点,return返回所求点的值。

实现代码
#include "NewtonInterPol.h"
#include "vetMtxBase.h"
double NewtonInterPol(double arrX[], double arrY
#ifndef FUNCTION_H_ #define FUNCTION_H_ #include #include #include "polyfit.h" #include using namespace std; dxs::dxs() { ifstream fin("多项式拟合.txt"); fin>>n; x=new float[n]; y=new float[n]; for(int i=0;i>x[i]; } for(i=0;i>y[i]; } cout<>nn; m=nn+1; u=new float*[m]; for(i=0;i<m;i++) { u[i]=new float[m+1]; }//创建m行,m+1列数组 } void dxs::dfine() { for(int i=0;i<m;i++) { for(int j=0;j<m+1;j++) { u[i][j]=0; } } for(i=0;i<m;i++) { for(int j=0;j<m;j++) { for(int k=0;k<n;k++) { u[i][j]=u[i][j]+pow(x[k],j+i); } } } for(i=0;i<m;i++) { for(int k=0;k<n;k++) { u[i][m]=u[i][m]+pow(x[k],i)*y[k]; } } } void dxs::show() { for(int i=0;i<m;i++) { for(int j=0;j<m+1;j++) { cout<<u[i][j]<<" ";//<<endl; } cout<<endl; } ////显示具有m行m+1列u数组的各元素值 } void dxs::select_main(int k,float **p,int m) { double d; d=*(*(p+k)+k); //cout<<d; int l=k; int i=k+1; for(;i fabs(d)) { d=*(*(p+i)+k); l=i; } else continue; } if(d==0) cout<<"错误"; else { if(k!=l) { for(int j=k;j<m+1;j++) { double t; t=*(*(p+l)+j); *(*(p+l)+j)=*(*(p+k)+j); *(*(p+k)+j)=t; } } } } void dxs::gaosi() { for(int k=0;k<m;k++) { select_main(k,u,m);//调用列主元函数 for(int i=1+k;i<m;i++) { // *(*(p+i)+k)=(float) *(*(p+i)+k) / *(*(p+k)+k); u[i][k]=(float) u[i][k] / u[k][k]; } for(i=k+1;i<m;i++) { for(int j=k+1;j=0;i--) { float a=0; for(int j=i+1;j<m;j++) { //a=a + (*(*(p+i)+j) * *(*(p+j)+m)); a=a+u[i][j] * u[j][m]; } //*(*(p+i)+n-1)= (*(*(p+i)+n-1) - a) / *(*(p+i)+i); u[i][m]= (u[i][m] -a) / u[i][i]; } cout<<"方程组的解为:"<<endl; for(i=0;i<m;i++) { cout<<"a"<<i+1<<"="; cout<<u[i][m]<<endl; // l[i]=*(*(p+i)+n-1); } cout<<"y="<<u[0][m]; for(i=1;i<m;i++) { cout<<showpos<<u[i][m]<<"x"; if(i!=1)cout<<"^"<<noshowpos<<i; } cout<<endl; } dxs::~dxs() { delete[]x,y; delete []*u; } #endif
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【执珪】瑕瑜·夕环玦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值