2021-06-19 sklearn中的线性回归模型

import numpy as np 
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

sklearn的线性模型是最简单的一个模型了,也就是LinearRegression

数据拆分

# 数据拆分
x_train, x_test, y_train, y_test = train_test_split(data[1:, 0], data[1:, 1], test_size = 0.3)
print(x_train.shape)
# 也就是说,测试集的比例是30%.那就是300*0.3=90
x_test.shape

上面这个train_test_split是将数据拆分为70%的训练集和30%的测试集
训练模型也是一个十分简单的两句话。

# 训练模型
model = LinearRegression()
model.fit(x_train, y_train)

这样就好了。

这个是做预测的。

# 训练集的散点图
plt.scatter(x_train, y_train, color = 'b')
# 模型对训练集的预测结果
plt.plot(x_test,model.predict(x_test), color ='r' , linewidth=5)
# 画表头和xy坐标描述
plt.title('Age Vs Quality (Training set)')
plt.xlabel('Age')
plt.ylabel('Quality')
plt.show()

预测是很简单的,就是

model.predict(x_test)

在这里插入图片描述结果如上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值