异常声音检测之kaldi DNN 训练

这篇博客介绍如何利用kaldi的深度神经网络(DNN)技术进行音频分类,特别是异常声音检测。主要训练步骤包括预训练DBN、训练DNN、生成lattices和alignments以及sMBR迭代训练。通过这些步骤,可以构建一个能够识别异常声音的模型。
摘要由CSDN通过智能技术生成

使用kaldi的DNN做音频分类,异常声音检测。

基本上沿用语音识别的思路,有两点注意一下即可。

1. 在训HMM/GMM时,训到monophone即可,使用monophone的HMM与alignment来训DNN

2.语言模型的准备,手动构造一个一元的简单模型即可

DNN的主要训练步骤如下:

#Step 1. Pre-train DBN

steps/nnet/pretrain_dbn.sh

 --cmvn-opts "--norm-means=true --norm-vars=true" // 均值方差归一化

--delta-opts "--delta-order=2"// 差分特征

--splice 5

--nn_depth 3 // 隐含层的个数

--hid-dim 256// 隐层节点数

--rbm-iter 8 // 迭代次数

$train $dir


# Step2:Train the DNN optimizing per-frame cross-entropy

steps/nnet/train.sh 

--feature-transform $feature_transform 

--dbn

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值