一、背景
现有的故障诊断方法涵盖了振动信号、温度、红外图像、声信号等多种测量方式。其中振动信号与故障关联性强,在故障诊断中应用最为广泛,然而其受限于接触式测量方式,无法应用于高温、高腐蚀和设备表面不规则等非接触场景。温度信号可采用非接触式测量,但其在某些故障情景下变化不明显。红外图像亦无需接触式测量,但是其安装成本较高。相比之下,声信号采集装备安装简单、成本低,且无需接触式测量,在工业设备故障诊断中具有很大优势。
二、传统方法
传统故障诊断方法流程:
1.信号滤波
常用方法主要包括奇异值分解滤波、小波阈值滤波和经典模态分解滤波等经典滤波方法,此外,还包括随机共振、混沌振子、差分振子等方法。
2.特征工程
经过信号滤波后的声信号通常是高维信号,无法由分类器进行有效地训练。因此,需要对滤波后的信号进行特征构建,提取与选择以降低信号的维度,减少计算时间以及提高最终故障诊断的准确性。
常见的声信号特征:时域特征、频域特征(梅尔倒谱系数MFCC)、时频特征、融合特征。
声信号的特征提取方法:时域分析法、频域分析法、时频分析法。
3.故障诊断
三、深度学习方法
基于声信号和深度学习的故障诊断研究思路:
(1)深度学习用于诊断分类
(2)深度学习用于特征工程
(3)深度学习用于特征工程与诊断分类
1.监督学习
监督学习基于正确分类或标记的数据进行模型的训练,从而使得模型能够对任意给定的输入,给出其相应的输出。其代表性方法包括:深度置信网络(deepbelief network,DBN)、卷积神经网络(convolutionalnetwork,CNN)以及循环神经网络(recurrentneuralneural network ,RNN)。
2.无监督学习
虽然有监督学习算法可以很好的进行故障诊断,但是,真实的工业设备大多在正常状态下运行,故障声信号往往是未知或者未标记的。标记每个数据是一个复杂而昂贵的过程,需要专家监督。相比之下,无监督学习算法可以在没有标签的数据里发现潜在的一些结构因此,无监督学习算法在工业设备故障诊断中具有重要价值,其代表性方法一般包括:堆叠自动编码器(stackedauto encoders,SAE)、生成式对抗网络(generativeadversarial network,GAN)以及迁移学习(transferlearning , TL)。
3.半监督学习
深度半监督学习可以从大量未标记数据和少量标记数据进行学习,近年来受到了越来越多的关注。在基于声信号的故障诊断中的半监督学习代表性方法包括:图神经网络(graph neural network,GNN)模型和Trans-former模型。
四、难点与热点
目前,随着5G时代的来临,以及故障诊断领域新技术、新理论的不断融合与发展,基于声信号的工业设备故障诊断的相关研究已经取得了一定的研究成果。
难点:
(1)复杂噪声环境下的故障诊断;
(2)小样本故障诊断;
(3)跨场景故障诊断
热点:
(1)复杂噪声环境下的故障诊断
(2)面向场景和声信号特点的神经网络模型优化适配
(3)小样本故障诊断
(4)跨场景故障诊断
(5)多模态信息融合的故障诊断
(6)故障理论
本文总结来自:
[1]周玉蓉;张巧灵;于广增;徐伟强.基于声信号的工业设备故障诊断研究综述[J].计算机工程与应用,2023,59(07):51-63.