近年来,随着人工智能的迅猛发展,计算机视觉方面取得了令人瞩目的成果。视觉识别是计算机视觉领域中一个重要的任务,而卷积神经网络(CNN)一直以来都是主流的视觉识别模型。然而,最近推出的全局注意力变换(Vision Transformer,简称ViT)模型却引起了广泛关注。本文将介绍ViT模型与传统CNN模型之间的差异,以及ViT模型的优势和应用领域。
首先,让我们了解一下传统CNN模型的基本原理。CNN模型是一种特殊的神经网络结构,通过使用卷积层、池化层和全连接层来提取图像中的特征,进而进行分类或其他视觉任务。CNN模型在图像处理领域取得了巨大的成功,被广泛应用于图像分类、目标检测和图像分割等任务中。
然而,传统CNN模型存在一些限制。首先,CNN网络结构通常需要大量的参数和计算资源。对于大规模的图像数据集,如ImageNet,训练和推理传统的CNN模型需要巨大的计算开销。其次,CNN模型是基于局部感受野的思想,通过卷积核在图像上滑动来提取特征。这种局部感受野的限制可能导致模型对全局信息的感知能力不足。
为了解决这些问题,ViT模型提出了一种全局注意力机制,将图像映射为一组可处理的序列数据。ViT模型使用多头注意力机制来建