基础数学系列(一)--似然函数与最大似然估计

本文介绍了基础数学中的最大似然估计方法,分别讲解了在离散型和连续型分布中的应用。通过对样本似然函数的理解,阐述如何寻找使样本出现概率最大的参数估计值,从而确定参数的最大似然估计量。
摘要由CSDN通过智能技术生成

1.似然函数

(1)离散型

若总体X属离散型,其分布律P{X=x}=p(x;\theta),\theta \in \Theta的形式为已知,\theta为待估参数,\Theta\theta可能取值的范围,设X_{1},X_{2},\cdot \cdot \cdot ,X_{n}是来自X的样本,则X_{1},X_{2},\cdot \cdot \cdot ,X_{n}的联合分布律为:

                                                                      \prod _{i=1}^{n}p(x_{i};\theta ).

又设x_{_{1}},x_{2},\cdot \cdot \cdot ,x_{n}是相应于样本X_{1},X_{2},\cdot \cdot \cdot ,X_{n}的一个样本值,易知样本X_{1},X_{2},\cdot \cdot \cdot ,X_{n}取到观测值x_{_{1}},x_{2},\cdot \cdot \cdot ,x_{n}的概率,亦即事件{ X_{1}=x_{1},X_{2}=x_{2},...,X_{n}=x_{n}}发生的概率为

                                                    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值