089基于深度学习的小样本数据检测

本文探讨了基于深度学习的小样本数据检测,涉及卷积神经网络(CNN)的各种模型,如AlexNet、ResNet等,以及目标检测模型如YOLO系列和图像分割模型如Unet。提供了数据增强、模型训练以及使用PyQT界面进行图片识别的实战流程,每个类别仅用10张图片进行训练,并详细展示了训练过程中的评价指标。
摘要由CSDN通过智能技术生成

卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型
目标检测一般是yolov3、yolov4、yolov5、yolox、PSPnet、faster_rcnn、SDD等
图像分割一般是Unet、mask-rcnn、PSPnet、yolov5-segment等

​demo仓库和视频演示找089期:

银色子弹zg的个人空间-银色子弹zg个人主页-哔哩哔哩视频

效果展示图如下:

 

​代码文件展示如下:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值