自然语言处理(五)——单词纠错

本文介绍了编辑距离和cutoff编辑距离的概念,用于衡量字符串之间的相似度。编辑距离包括插入、删除和修改三种操作。cutoff编辑距离则是在一定阈值内的最小编辑距离。在单词纠错方面,通过建立自动机来判断输入单词的正确性,并提供可能的纠正建议。当输入错误如'hellp'时,自动机可提示用户可能想输入的是'hello'。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、概念

编辑距离(Edit Distance):是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。

精准的定义就不多说了,直接上例子来理解这个编辑距离。编辑主要有三个操作:插入、删除、修改。例如:goood变为good,只需要删除一个o,因此编辑距离是1。gd变为god。只需要插入一个o,因此编辑距离是1。gwd变为god,只要修改w为o,因此编辑距离是1。

cutoff编辑距离(cut-off Edit Distance):  官方的概念我就不粘贴过来了,直接举个例子来说明什么是cutoff编辑距离。

例子如下:Y字符串是正确的字符串的一部分,X字符串是错误的字符串。两个字符串是从o开始不一样的。

计算cutoff编辑距离的过程:

(1)  令 n = length(Y)  (n为Y字符串的长度)显然这里的n=4。令m = length(X) ,显然这里的m=7。

(2)  令low = max(1,n-t)  t是阈值,这里的不妨令t=2。令up = min(m,n+t)。带入数值可以得出 low = 2,up = 6。到此步变为下图。意思就是从第2个字符开始到第6个字符截止进行计算。

### 朴素贝叶斯算法在自然语言处理中的应用场景 #### 应用于文本分类 朴素贝叶斯分类器因其简单性和高效性,在文本分类任务中表现出色。该方法基于贝叶斯定理并假定特征之间相互独立,即所谓的“朴素”假设。对于给定的一组文档集合D={d_1,d_2,...,d_n}及其对应的标签L={l_1,l_2,...,l_m},通过训练数据学习到不同类别下的单词分布情况,进而预测新输入文档所属的具体类别[^2]。 #### 处理拼写纠错问题 当面对单个字符级别的错误时,可以采用纯粹形式的贝叶斯推断来进行纠正工作。这里并不涉及复杂的条件独立性假设,而是直接利用目标词汇表内的候选词作为潜在替换选项,并依据其出现频率等因素调整后验概率大小以决定最终修正结果[^3]。 ### 实现方法概述 为了更好地理解如何将朴素贝叶斯应用于实际场景当中,下面给出了一种常见的做法——结合TF-IDF加权机制完成多类别文本分类: 1. **预处理阶段** - 对原始语料库执行分词操作; - 移除停用词和其他无关符号; - 统计各词条在整个文集中出现次数tf(t),以及包含特定词条t的文章占比idf(t); 2. **构建模型矩阵X与y** - 使用上述统计信息创建稀疏矩阵表示每篇文档内所有可能关键词的重要性得分; - 同步准备相应的标注向量y记录真实类别标记; 3. **训练过程** - 初始化多项式分布参数α,默认取值为1代表拉普拉斯平滑; - 调整是否启用先验估计开关fit_prior; - 如果已知各类别比例,则可以直接指定class_prior数组; 4. **评估性能** - 测试集上的准确率、召回率等指标衡量泛化能力; ```python from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import make_pipeline import numpy as np # 构建管道流程 model = make_pipeline(TfidfVectorizer(), MultinomialNB(alpha=1.0)) # 假设已有训练样本 X_train 和对应标签 y_train model.fit(X_train, y_train) # 预测未知样例 predicted_labels = model.predict(new_samples) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值