Apriori算法的原理和流程

Apriori算法——关联规则挖掘

前言:

首先,关联规则挖掘的目的是找出事物之间存在的隐藏的关系,比如经典的案例啤酒和尿布的的故事,用我们人的思维来思考的话,男性在买尿布的时候会买几瓶啤酒,这二者并没有什么因果关系。然而通过对海量数据进行关联分析,却能够发现这个有趣的知识,在超市调整货架后,明显的提升了超市啤酒尿布的销量。

基本概念:

1.关联规则的表示:   泡面 => 火腿 [support=2%;confidence=70%] 。这个就是关联规则的表示方法,其中支持度(support)和 (置信度)confidence是两个衡量这个规则是否有趣的度量标准。

2.支持度:按照上面的例子来讲,已知了支持度是2%,意味着所有事务的2%显示同时买了泡面和火腿。如果这个有疑惑大可不必着急,这个在还会在后续的例子里面具体阐述。

3.置信度:例如上述的置信度为70%,意味着所有买泡面的顾客,70%的顾客都买了火腿。

4.项集:项集就是项的集合,例如:{矿泉水,泡面,火腿}  这是一个3项集,项集的出现频度是包含项集的事务数,把它记作支持度计数,通俗的来说,假设有三个顾客分别买了{矿泉水,泡面,火腿}、{矿泉水,泡面,火腿、牛栏山}、{矿泉水,火腿}。那么这个3项集的支持度计数就是2。

5.频繁项集:如果我们预定义的支持度计数是2,也就是此时的支持度计数阈值为2,而上述的3项集的支持度计数是2,所以该3项集是频繁项集。

6.置信度计算公式:confidence( 泡面 => 火腿 ) = P(火腿  |  泡面) = {\color{Green} }

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值