机器学习评价指标(分类、目标检测)

理解与应用:混淆矩阵、准确率、精确率与召回率在机器学习中的评估

https://zhuanlan.zhihu.com/p/364253497
https://zhuanlan.zhihu.com/p/46714763
https://blog.csdn.net/u013250861/article/details/123029585

1.1 混淆矩阵

在介绍评价指标之前,我们首先要介绍一下混淆矩阵(confusion matrix)
混淆矩阵本身是对于预测结果的一个粗略评价,可以让我们对预测结果和原始数据有一个宏观的了解。同时我们也会在计算后面的评价指标时用到混淆矩阵中的数。
image.png

混淆矩阵里面有四个格子,包含了我们在进行一个二分类预测的时候,预测结果所有可能出现的情况。也就是说,对于任何一个样本进行预测以后,预测结果一定属于这四个格子的其中一个:
True Positive(TP)表示实际上这个样本为Positive,模型也把这个样本预测为Positive的情况。这是我们预测正确的部分
True Negative(TN)表示实际上这个样本为Negative,模型也把这个样本预测为Negative的情况。这是我们预测正确的部分
False Positive(FP)表示实际上这个样本为Negative,但是模

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI学长与深度学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值