https://zhuanlan.zhihu.com/p/364253497
https://zhuanlan.zhihu.com/p/46714763
https://blog.csdn.net/u013250861/article/details/123029585
1.1 混淆矩阵
在介绍评价指标之前,我们首先要介绍一下混淆矩阵(confusion matrix)。
混淆矩阵本身是对于预测结果的一个粗略评价,可以让我们对预测结果和原始数据有一个宏观的了解。同时我们也会在计算后面的评价指标时用到混淆矩阵中的数。
混淆矩阵里面有四个格子,包含了我们在进行一个二分类预测的时候,预测结果所有可能出现的情况。也就是说,对于任何一个样本进行预测以后,预测结果一定属于这四个格子的其中一个:
True Positive(TP)表示实际上这个样本为Positive,模型也把这个样本预测为Positive的情况。这是我们预测正确的部分。
True Negative(TN)表示实际上这个样本为Negative,模型也把这个样本预测为Negative的情况。这是我们预测正确的部分。
False Positive(FP)表示实际上这个样本为Negative,但是模
理解与应用:混淆矩阵、准确率、精确率与召回率在机器学习中的评估

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



