2021深圳杯&东三省D题具体思路+部分代码+抓捕数据

该博客探讨了2021深圳杯数学建模D题,涉及一个微分对策问题——羊与犬的博弈。通过精确建模,分析了犬的最优围堵策略和羊逃逸的条件。接着,提出了机器学习方法帮助羊学习逃逸,并设计了评价体系量化学习能力。文章包含部分代码实现。
摘要由CSDN通过智能技术生成

2021深圳杯数学建模D题
基于一个微分对策问题的机器学习能力定量评价
由于用机器学习方法求解诸如最优控制、微分对策这样具有连续动作和状态的问题时,效率(效果/算力)较低,特殊的微分对策问题将是测试机器学习方法的竞争案例。一个古老的羊-犬博弈问题:羊在半径为R的圆形圈内具有定常速率v和满足以下限制的任意转弯能力:逃逸路径上每一点与圆心的距离随时间单调不减。羊逃出圆形圈则胜。犬沿着圆周以定常速率V围堵以防止羊逃逸,任何时刻具有选择圆周的两个方向之一的能力。
通过运动学精确建模求解犬的最优围堵策略;
假设犬以最优策略围堵,基于精确建模求解羊可以逃逸胜出的条件;
假设羊理解自己的能力、限制和躲避犬围堵而逃逸的目标,但不具备基于运动学的最优化决策知识,假设2中羊可以逃逸的条件被满足,给出一种机器学习方法,使得羊通过学习训练后实现逃逸;4. 设计一套评价体系,定量评价3中给出的机器学习方法的学习能力;
5.提出并定量评价更多的羊逃逸机器学习方法。
 

具体思路:

1.采用动态优化,对时间进行离散,建立追捕的动态模型,狼以距离最小为目标,羊依据距离不停的优化以逃出圈与躲避追捕。

2.在第一问的基础上对主要的三个变量进行遍历循环,将得到的数据通过聚类以实现解空间的求解

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值