数学史话(国外篇)

数学史话(国外篇)

 

常用数学语言的诞生

现在的数学以简明而美妙的形式出现在我们的面前,首先应当感谢数字记号和符号体系的出现。

早在公元6世纪,由印度所首创的1、2、3、…、9及尔后的0等数字记号就为数字的书写带来了极大的方便。

1489年德国数学家德曼开始在他的数学书中首先使用“+”和“-”作为加号和减号. 但他的这个创造经过了100年才得到人们的认可。

英国著名的数学家奥屈特于1631年提出用“×”表示相乘,用“:”表示除或比。当时也有人主张用除线“—”表示相除. 1659年瑞士的拉痕把两种除号合二为一,得到了“÷”。

德国著名数学家莱布尼茨认为“×”容易与未知数的字母X相混,他赞成用“·”作乘号,用“:”作除号。其中乘号“·”是英国数学家赫锐奥特首创的,他还在1631年创用了大于号“>”和小于号“<”。

1540年英国数学家锐考尔德开始用“=”作为等号。他曾说,他所知道的最相象的东西是两条平行线,所以这两条线应当用来表示相等。

1591年,法国著名数学家韦达和笛卡尔先后都用拉丁字母表中前面的字母a、b、c等表示已知数,后面的字母x、y、z等表示未知数。

 

用字母表示数的来历

都知道,英文有26个字母。但这26个字母的来历,知道的人恐怕就不多了。原来,英文字母渊源于拉丁字母,拉丁字母渊源于希腊字母,而希腊字母则是由腓尼基字母演变而来的。

腓尼基是地中海东岸的文明古国,其地理位置大约相当于今天黎巴嫩和叙利亚的沿海一带。“腓尼基”是希腊人对这一地区的称谓,意思是“紫色之国”,因该地盛产紫色染料而得名。罗马人则称之为“布匿”。

公元前20世纪初,在腓尼基产生一些小的奴隶制城邦,但从未形成统一的国家。在古代,腓尼基以工商业和航海业闻名于世。至公元前10世纪前后,其活动范围已达今塞浦路斯、西西里岛、撒丁岛、法国、西班牙和北部非洲,并建立了许多殖民地。公元前8世纪以后,亚述、新巴比伦等国相继侵入腓尼基。公元前6世纪,腓尼基终于被波斯帝国兼并。

大约公元前13世纪,腓尼基人创造了人类历史上第一批字母文字,共22个字母(无元音)。这是腓尼基人对人类文化的伟大贡献。腓尼基字母是世界字母文字的开端。在西方,它派生出古希腊字母,后者又发展为拉丁字母和斯拉夫字母。而希腊字母和拉丁字母是所有西方国家字母的基础。在东方,它派生出阿拉美亚字母,由此又演化出印度、阿拉伯、希伯莱、波斯等民族字母。中国的维吾尔、蒙古、满文字母也是由此演化而来。

据考证,腓尼基字母主要是依据古埃及的图画文字制定的。在古埃及,“A”是表示“牛头”的图画;“B”是表示“家”或“院子”的图画;“C”和“G”是表示“曲尺”的图画;“D”是表示“门扇”的图画;“E”是表示一个“举起双手叫喊的人”的图画;“F”、“V”、“Y”是表示“棍棒”或“支棒”的图画;“H”是表示“一节麻丝卷”的图画;“I”是表示“展开的手”的图画;“K”是表示“手掌”的图画;“M”是表示“水”的图画;“N”是表示“蛇”的图画;“O”是表示“眼睛”的图画;“P”是表示“嘴巴”的图画;“Q”是表示“绳圈”的图画;“R”是表示“人头”的图画;“S”和“X”是表示“丘陵地”或“鱼”的图画;“T”是表示“竖十字型”的图画;“Z”是表示“撬”或“箭”的图画。公元前2世纪时,拉丁字母已包括了这23个字母。后来,为了雕刻和手写的方便,并为了使元音的“V”和辅音的“V”相区别,便把原来的“V”的下方改成圆形而定为元音“U”;又把两个“V”连起来变出了一个做辅音用的“W”,这个“W”的出现已是11世纪的事了。后来人们又把“I”稍稍变化而另创出一个辅音字母“J”。这样,原来的23个字母再加上“U”、“W”、“J”三个字母,就构成了26个字母的字母表了。中世纪时,拉丁字母基本定型,后世西方文字(当然也包括英文)都是由它演变而来。

 

 

 

 

 

古代的平方数表

  

第一块泥版上所刻的数据考证,这批泥版是古巴比伦人遗留下来的,大约于公元前2300-1600年间制成。那么,泥版上所刻的数又是什么意思呢?

经过很长时间的研究终于发现,它们是古巴比伦人的平方数表和立方数表。在平方数表上刻着1—60的平方数,在立方数表上刻着1—32的立数。

原来,古代巴比伦人的记数方法是以60进位的,这些数表上的记号也只有用60进位制才能解释得通。例如,对于第一块泥版上所刻的数,其中1、4、9、16、25、36、49分别是1、2、3、4、5、6、7的平方,这是很容易理解的。至于1.4、1.21......、4.16等数,实际上应作如下解释:

第8个数,1.4意为1×60+4=64=;

接下去的数,1.21意为1×60+21=81=;

1.40意为1×60+40=100=;

2.1意为2×60+1=121=;

........................

4.16意为4×60+16=256=。

古代巴比伦人还没有用来表示数字0的记号。因而,在他们的泥版平方数表上,1.4和1.40实际上使用的是相同的记号,如果我们有幸能够看到当年古巴比伦人写出的算式,那么,必须根据算式中上下文的意思才能把它们区别开来。由此可知,数字0的出现,给我们记数带来了多大的方便!

 

 

 

 

 

 

 

 

 

伽菲尔德证明勾股定理

学过几何的人都知道勾股定理.它是几何中一个比较重要的定理,应用十分广泛.迄今为止,关于勾股定理证明方法已有400多种.其中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话.
总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是否定的.事情的经过是这样的;

在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正 在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会地 谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循 声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正 俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干什么?

只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。

于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。

1881年,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。

勾股定理同时也是数学中应用最广泛的定理之一。例如从勾股定理出发逐渐发展了开平方开立方;用勾股定理求圆周率。据称金字塔底座的四个直角就是应用这一关系来确定的.至今在建筑工地上,还在用它来放线,进行“归方”,即放“成直角”的线。

正因为这样,人们对这个定理的备加推崇便不足为奇了。1955年希腊发行了一张邮票,图案是由三个棋盘排列而成。这张邮票是纪念二千五百年前希腊的一个学派和宗教团体 —— 毕达哥拉斯学派,它的成立以及在文化上的贡献。邮票上的图案是对勾股定理的说明。希腊邮票上所示的证明方法,最初记载在欧几里得《几何原本》里。
尼加拉瓜在1971年发行了一套十枚的纪念邮票,主题是世界上“十个最重要的数学公式”,其中之一便是勾股定理。

2002年的世界数学家大会在中国北京举行,这是21世纪数学家的第一次大聚会,这次大会的会标就选定了验证勾股定理的“弦图”作为中央图案,可以说是充分表现了我国古代数学的成就,也充分弘扬了我国古代的数学文化,另外,我国经过努力终于获得了2002年数学家大会的主办权,这也是国际数学界对我国数学发展的充分肯定。

今天,世界上几乎没有人不知道七巧板和七巧图,它在国外被称为“唐图”(Tangram),意思是中国图(不是唐代发明的图)。七巧板的历史也许应该追溯到我国先秦的古籍周髀算经》,其中有正方形切割术,并由之证明了勾股定理。而当时是将大正方形切割成四个同样的三角形和一个小正方形,即弦图,还不是七巧板。现在的七巧板是经过一段历史演变过程的。

甚至还有人提出过这样的建议:在地球上建造一个大型装置,以便向可能会来访的“天外来客”表明地球上存在有智慧的生命,最适当的装置就是一个象征勾股定理的巨大图形,可以设在撒哈拉大沙漠、苏联的西伯利亚或其他广阔的荒原上,因为一切有知识的生物都必定知道这个非凡的定理,所以用它来做标志最容易被外来者所识别!?
有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知数)有正整数解以外,其他的三元n次方程xn + yn =zn(n为已知正整数,且n>2)都不可能有正整数解。这一定理叫做费尔马大定理费尔马17世纪法国数学家)。

 

 

 

 

 

 

笛卡尔创建直角坐标系

传说中有这么一个故事:

  有一天,笛卡尔(1596—1650,法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3、2、1,也可以用空间中的一个点P来表示它们(如图1)。同样,用一组数(a,b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示(如图2)。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。

无论这个传说的可靠性如何,有一点是可以肯定的,就是笛卡尔是个勤于思考的人。这个有趣的传说,就象瓦特看到蒸汽冲起开水壶盖发明了蒸汽机一样,说明笛卡尔在创建直角坐标系的过程中,很可能是受到周围一些事物的启发,触发了灵感。

直角坐标系的创建,在代数和几何上架起了一座桥梁。它使几何概念得以用代数的方法来描述,几何图形可以通过代数形式来表达,这样便可将先进的代数方法应用于几何学的研究。

笛卡尔在创建直角坐标系的基础上,创造了用代数方法来研究几何图形的数学分支——解析几何。他的设想是:只要把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特性的点组成的。比如,我们把圆看成是一个动点对定点O作等距离运动的轨迹,也就可以把圆看作是由无数到定点O的距离相等的点组成的。我们把点看作是留成图形的基本元素,把数看成是组成方程的基本元素,只要把点和数挂上钩,也就可以把几何和代数挂上钩。

把图形看成点的运动轨迹,这个想法很重要!它从指导思想上,改变了传统的几何方法。笛卡尔根据自己的这个想法,在《几何学》中,最早为运动着的点建立坐标,开创了几何和代数挂钩的解析几何。在解析几何中,动点的坐标就成了变数,这是数学第一次引进变数。

恩格斯高度评价笛卡尔的工作,他说:“数学中的转折点是笛卡尔的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学。”

坐标方法在日常生活中用得很多。例如象棋、国际象棋中棋子的定位;电影院、剧院、体育馆的看台、火车车厢的座位及高层建筑的房间编号等都用到坐标的概念。

随着同学们知识的不断增加,坐标方法的应用会更加广泛。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值