三维空间中的两直线相交

        很多资料上提供的两直线相交求点问题一般都是基于二维空间的,而且是直接使用坐标系进行求解。实际上知道二维空间中的求法(使用坐标系进行求解的),要想从中推导到三维空间中的求法是不容易的。在进行几何问题求解时,除了使用坐标系求解问题外,使用向量求解问题也许更容易。向量空间是隐藏坐标系的,使用向量空间求解几何问题比使用坐标系求解问题更好的是,它将问题的解法提升到了一个宏观的高度,并且有了基于向量空间的解法,那么可以把这个解法直接延伸到n维都很容易。

        假设有两直线l1和l2,它们的参数方程如下所示:(向量v1,v2均为单位向量)

l1: P1 = R1 + t1v1;
l2: P2 = R2 + t2v2.
两直线平行、异面和相交的判断方法

平行:v1×v2 = 0

异面:(R2-R1, v1, v2) ≠ 0;

相交:(R2-R1, v1, v2) = 0且v1×v2 ≠ 0

若相交,那么需要求出两直线的交点。如下图所示:


两直线交点为P,|R1P| = t1,|R2P| = t2。根据三角形正弦定理,△R1R2P中,t1/sinθ1 = t2/sinθ2 = |R1R2|/sinθ3,要求交点,可先求得t1或t2,t1,t2的值可通过正弦定理求得。两向量夹角的正弦值是隐藏在向量外积的长度上的,如上图所示,θ3是向量v1,v2的夹角,则|v1×v2| = sinθ3。

        可立方程:(R1-R2)×v2 = t1(v2×v1),因为|(R1-R2)×v2| = |R1R2|sinθ1。可求得:t1 = (R1-R2)×v2/(v2×v1),同理,可求得t2 = (R2-R1)×v1/(v1×v2),将t1代入l1方程即可得到交点P,或将t2代入l2方程也可得到交点P,两者只需求其一。

        但是在计算机中,由于同一直线,它的参数方程可有多种描述(起点可选不同的点,或者单位方向向量可不同),参数t可为正值也可为负值。所以需要将对两直线相交的情况分为四种,上述是第一种情况,第二种是只需对l1做反向延长线进行求交,第三种是只需对l2做反向延长线进行求交,第四种是需要对l1和l2均做反向延长线进行求交。

        第二种情况和第三种情况可视为同一种情况,这里只对第三种情况进行分析。第三种情况如下图所示:


则相对第一种情况,在这种情况下,t1' = t1 = (R1-R2)×v2/(v2×v1), t2' = t2 = (R2-R1)×v1/(v1×v2),只不过t1‘的值为正值,t2’的值为负值

        第三种情况如下图所示:


则相对第一种情况,在这种情况下,t1'‘ = t1 = (R1-R2)×v2/(v2×v1), t2'’ = t2 = (R2-R1)×v1/(v1×v2),只不过t1''和t2''的值均为负值

        综上四种情况,t1和t2的求解公式都是一样的,即t1 = (R1-R2)×v2/(v2×v1)t2 = (R2-R1)×v1/(v1×v2)

在C++中,计算三维空间相交直线之间的角度通常需要一些几何知识,特别是线段的方向向量和平行线的概念。以下是一个基本步骤: 1. **获取直线方向向量**:对于每条直线,你需要找到它们的起点和终点坐标,然后计算出从起点到终点的向量。例如,对于直线A和B,方向向量分别是`vA = P2A - P1A` 和 `vB = P2B - P1B`。 2. **检查直线是否相交**:如果直线的方向向量在同一平面内并且不平行,则它们会相交。你可以通过计算这向量的点积(dot product),如果结果小于0说明垂直,等于0表示平行,大于0则不平行。 3. **计算夹角**:若直线相交,接下来可以使用向量的余弦定理或叉乘法来计算向量之间的角度。首先找到它们的叉乘结果(cross product)`crossProduct = vA × vB`,然后将这个向量的长度除以原来向量长度的乘积(即点积的平方根),得到余弦值。最后,使用反正弦函数 (`acos`) 将余弦转换为角度范围在[0,π]内的夹角。 ```cpp #include <cmath> #include <vector> // 向量运算 std::vector<double> crossProduct(const std::vector<double>& a, const std::vector<double>& b) { return {a[1]*b[2] - a[2]*b[1], a[2]*b[0] - a[0]*b[2], a[0]*b[1] - a[1]*b[0]}; } double angleBetweenLines(const std::vector<double>& lineAStart, const std::vector<double>& lineAEnd, const std::vector<double>& lineBStart, const std::vector<double>& lineBEnd) { double vA = {lineAEnd[0] - lineAStart[0], lineAEnd[1] - lineAStart[1], lineAEnd[2] - lineAStart[2]}; double vB = {lineBEnd[0] - lineBStart[0], lineBEnd[1] - lineBStart[1], lineBEnd[2] - lineBStart[2]}; if (std::abs(vA[0]*vB[0] + vA[1]*vB[1] + vA[2]*vB[2]) < 1e-6) { // 平行处理 return 0; } double crossProductNorm = std::sqrt(std::pow(crossProduct(vA, vB)[0], 2) + std::pow(crossProduct(vA, vB)[1], 2) + std::pow(crossProduct(vA, vB)[2], 2)); double cosTheta = (vA.dot(vB)) / (crossProductNorm * std::sqrt(std::pow(vA.length(), 2) * std::pow(vB.length(), 2))); return std::acos(cosTheta); // 返回角度(弧度转角度) } ```
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值