基于GARCH模型的股市研究与危机预警——R语言实现

摘要

 

     为防范股票市场上的不确定性和风险,有效地度量股票指数收益率的波动性显得尤为重要。本文运用GARCH族模型拟合了股票指数收益率的波动性方程并实证研究了全球有代表性的上证综指、NASDAQ指数、德国DAX、日本日经指数。结果表明四个国家股票收益率均有聚集性、持续性,股票市场存在着冲击的非对称性。具体而言,美国、德国、日本股票市场对利空消息敏感,而对利好消息保持谨慎。而中国对利好利空消息均敏感,体现市场抗风险的薄弱性。此外,本文尝试使用SGARCH模型对股票收益率序列进行滚动预测,取得较好预测精度,同时文章首创性的基于Var曲线提出了股市危机预警信号。这些方案可以帮助投资者合理投资,增强股市的合理性、抗风险性。

关键字:GARCH    波动聚集   非对称性   滚动预测     Var   预警

各个股票市场操作方法类似,以上证指数为例展示代码。

 

包载入与数据预处理:

 

#包载入
library(fGarch)
library(rugarch)#garch拟合与预测
library(TSA)#BIC准则确定arma阶数  eacf确定garch阶数
library(tseries)
library(zoo)#转换成时间序列类型
library(forecast)#auto.arima() arma阶数确定方法
library(psych)#数据描述统计分析
library(ggplot2)#绘图
library(ccgarch)#JB统计量
###NASDAQ
#数据预处理
StockData<-read.csv("D:\\rwork\\课程设计\\SHANGZHENG1992-2015.csv",encoding='utf-8',header = T)  #header = Falese 
time<-as.Date(StockData$'time',format="%Y/%m/%d")
closeprice<-StockData$'closeprice'
data<-zoo(closeprice,time)
#选中局部数据
selectdata=window(data, start = as.Date("2005-01-01"), end = as.Date("2015-05-01"))
plot(selectdata,xlab="time",ylab="index",main="Shanghai Composite Index")
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值