【题目1】贪心
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
class Solution {
// 思路2:优先考虑胃口,先喂饱大胃口
public int findContentChildren(int[] g, int[] s) {
Arrays.sort(g);
Arrays.sort(s);
int count = 0;
int start = s.length - 1;
// 遍历胃口
for (int index = g.length - 1; index >= 0; index--) {
if(start >= 0 && g[index] <= s[start]) {
start--;
count++;
}
}
return count;
}
}
【题目2】
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。
相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。
整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。
局部最优推出全局最优,并举不出反例,那么试试贪心!
(为方便表述,以下说的峰值都是指局部峰值)
实际操作上,其实连删除的操作都不用做,因为题目要求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了(相当于是删除单一坡度上的节点,然后统计长度)
这就是贪心所贪的地方,让峰值尽可能的保持峰值,然后删除单一坡度上的节点。
class Solution {
public int wiggleMaxLength(int[] nums) {
if(nums.length <= 1 )
return nums.length;
int curDiff = 0;
int preDiff = 0;
int result = 1;
for(int i=0;i<nums.length-1;i++){
curDiff = nums[i+1] - nums[i];
if((curDiff>0&&preDiff<=0)||(curDiff<0&&preDiff>=0)){
result++;
preDiff = curDiff;
}
}
return result;
}
}
【题目3】
给你一个整数数组 nums
,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组 是数组中的一个连续部分。
思路分析:贪心在何处?当连续和为负数时候,放弃这一段连续子数组
class Solution {
public int maxSubArray(int[] nums) {
if(nums.length == 1)
return nums[0];
int max = Integer.MIN_VALUE;
int temp = 0;
for(int i =0;i<nums.length;i++){
temp += nums[i];
max = max > temp? max:temp;
if(temp<0){
temp = 0;
}
}
return max;
}
}
【题目4】
给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。
在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。
返回 你能获得的 最大 利润 。
思路:贪心在何处?一赚就卖
class Solution {
public int maxProfit(int[] prices) {
int max = 0;
for(int i =0;i<prices.length-1;i++){
if(prices[i+1] > prices[i])
max += (prices[i+1] - prices[i]);
}
return max;
}
}