TensorFlow使用反向卷积进行图片分割

声明:

  1. 翻译自Image Segmentation using deconvolution layer in Tensorflow

使用反向卷积进行图片分割

反向卷积(deconvolution)不止应用于图片分割领域,在各种输入维度小于输出维度的领域都有应用。

1. 什么是图片分割

Image segmentation
图片分割是将一个图片划分成不同的区域,进而帮助我们理解图片内容。

现在,CNN是目前最高效的图片识别手段,但却难以解决图片分割问题。why?
CNN
CNN的整个卷积过程相当于一个下采样(提取关键特征)的过程,最后在一个特征向量上做分类识别。但是图片分割需要得到每一个像素点的类别,不能直接应用下采样。所以,我们用了上采样的卷积层——反向卷积层(deconvolution layer)

2. 什么是deconvolution

为了在输出层输出一个同等大小的图片,需要进行上采样操作,而简单的上采样会导致信息的丢失。因此,需要一个可训练(层内参数随网络的训练而更新)的上采样层。

大体的网络结构就是先convolution,在deconvolution,最后的输出图片上每个像素点都对应一个label,标识着该像素点属于哪个区域。这种网络结构有点类似于encoder-deconder。

顾名思义,deconvoluion的操作与convolution相反,但不是绝对的反卷积。反卷积的数学含义,通过反卷积可以将通过卷积的输出信号,完全还原输入信号。而事实是,deconvolution只能还原shape大小,不能还原value。

2.1 详解deconvolution

以一维卷积和一维deconvolution为例。
x:1-D输入
y:卷积输出
一维卷积核大小:4
步长:2

一维卷积核
一维卷积核

卷积的示意图如下所示:
一维卷积示意图

解释:上方是输入x,x前面的两个0是padding的结果;左侧是输出y,是一维卷积核对x进行卷积的结果。
卷积运算就是对应区域相乘再求和。
橙色箭头=> y1=0×1+0×2+x1×3+x2×4 y 1 = 0 × 1 + 0 × 2 + x 1 × 3 + x 2 × 4
蓝色箭头=> y2=x1×1+x2×2+x3×3+x4×4 y 2 = x 1 × 1 + x 2 × 2 + x 3 × 3 + x 4 × 4
黄色箭头=> y3=x3×1+x4×2+x5×3+x6×4 y 3 = x 3 × 1 + x 4 × 2 + x 5 × 3 + x 6 × 4

现在,我们将上述一维卷积操作反转。

一维卷积反转

现在输入是y,输出是x,一个输入对4个输出节点产生影响。

一维卷积的x与y

反转后的卷积,输出x1只依赖于输入y1和y2。也就是说,前面卷积操作中,每个输出yi依赖于4个输入xi;反转后的卷积操作中,每个输出xi依赖于2个输入yi。

一维deconvolution
一维deconvolution示意图

在一维deconvolution示意图中可以发现,奇数次的输出 x2i1 x 2 i − 1 由卷积核[3, 1]计算而来,偶数次的输出 x2i x 2 i 由卷积核[4, 2]计算而来。不过这种计算方法效率不高,下面我们来对效率做一点优化。

改进后的deconvolution

PERFECT!!

3. 初始化deconvolution层

深度神经网络的性能受层初始化的方式影响很大。 所以让我们来看看解卷积层初始化的细节。前面我们讨论过,反卷积操作的概念源自类似特征上采样的概念。 所以,deconvolution层的初始化思想在很大程度上受到启发和设计。

3.1 图片上采样


假设上图12个点代表有12个像素的一维图片。其中,红色点代表像素值==1,记为O点;绿色点代表像素值==0,记为N点。对于连续的4个点[O1, N1, N2, O2],如果进行3倍图片上采样,即原来有4个正像素点,上采样后要变成12个,即N1和N2都要为正。

根据bilinear插值法, distance(N1,O1)distance(N1,O2)=12 d i s t a n c e ( N 1 , O 1 ) d i s t a n c e ( N 1 , O 2 ) = 1 2 ,所以 contribution(N1,O1)=23 c o n t r i b u t i o n ( N 1 , O 1 ) = 2 3 contribution(N1,O2)=13 c o n t r i b u t i o n ( N 1 , O 2 ) = 1 3

3.2 初始化deconvolution层


一个五维的卷积核


N1=23×O1+13×O2 N 1 = 2 3 × O 1 + 1 3 × O 2


N2=13×O1+23×O2 N 2 = 1 3 × O 1 + 2 3 × O 2
O2=1×O2 O 2 = 1 × O 2

tensorflow代码实现

def get_bilinear_filter(filter_shape, upscale_factor):
    # filter_shape == [width, height, num_in_channels, num_out_channels]
    kernel_size = filter_shape[1]
    # 卷积核中心
    if kernel_size % 2 == 1:
        centre_location = upscale_factor - 1
    else:
        centre_location = upscale_factor - 0.5

    bilinear = np.zeros([filter_shape[0], filter_shape[1]])
    for x in range(filter_shape[0]):
        for y in range(filter_shape[1]):
            # 插值计算
            value = (1 - abs((x - centre_location) / upscale_factor)) * (1 - abs((y - centre_location)/ upscale_factor))
            bilinear[x, y] = value
    weights = np.zeros(filter_shape)
    for i in range(filter_shape[2]):
        weights[:, :, i, i] = bilinear
    init = tf.constant_initializer(value=weights, dtype=tf.float32)
    bilinear_weights = tf.get_variable(name="decon_bilinear_filter", initializer=init,                             shape=weights.shape)
    return bilinear_weights

4. 代码实践

def upsample_layer(bottom, n_channels, name, upscale_factor):
    """
    bottom: 输入tensor
    n_channels: 通道数
    name: 上采样层名称
    upscale_factor: 上采样倍率
    """

        kernel_size = 2*upscale_factor - upscale_factor%2
        stride = upscale_factor
        strides = [1, stride, stride, 1]
        with tf.variable_scope(name):
            # Shape of the bottom tensor
            in_shape = tf.shape(bottom)

            h = ((in_shape[1] - 1) * stride) + 1
            w = ((in_shape[2] - 1) * stride) + 1
            new_shape = [in_shape[0], h, w, n_channels]
            output_shape = tf.stack(new_shape)

            filter_shape = [kernel_size, kernel_size, n_channels, n_channels]

            weights = get_bilinear_filter(filter_shape,upscale_factor)
            deconv = tf.nn.conv2d_transpose(bottom, weights, output_shape,
                                            strides=strides, padding='SAME')

        return deconv

这里最困难的就是shape的问题,可以参考这个github连接

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值