别让邮件营销成为鸡肋---53KF

           

  

                                                                                                 

                                                                                                      

 

轻轻点击鼠标,一封带有营销信息的邮件即被传送到成千上万潜在客户面前,成本低廉但效果明显。
    然而,随着邮件营销的越来越火热,客户们的表现却是越来越冷淡,如何不让邮件营销成为鸡肋——食之无味、弃之可惜?
   技巧一:定期清理用户列表
   没有人喜欢垃圾列表。
   收件人不喜欢,因为他们加入了一个混乱的邮件列表,无法收到需要的内容;服务商不喜欢,因为他们需要为阻塞和过滤这些不必要的电子邮件而花费大量的系统资源;你自己也一定不喜欢,因为过期的数据将直接导致邮件到达率、开启率、点击率的下降。
   此时,你可以使用邮件平台的发送统计功能。打开发件箱,找到你需要查看的信息主题,点击操作行的柱状统计按钮,就会显示该条信息的点击率、到达率、硬退数、软退数等,这些数据可以帮你成功清除那些在一定时间内没有打开任何邮件及没有产生任何点击的用户(点击数据可获取具体邮箱信息)。
  定期从列表中清除不活动的用户可以降低成本,从而获得更高的到达率。

                                                                                           

  技巧二:细分用户属性

  像大锅饭一样炒热客户的时代已经过去了!或者说,再没有适用一切用户的营销方式了。如今,大部分电商都在后台使用会员管理软件CRM,通过相应的数据分析,将用户行为进行细分,在充分了解用户的基础上,再进行有效的信息推送。
   个性化的服务,同时也是邮件服务商的建议。此时,可以将一些有着相同购买模式或兴趣爱好的用户进行归类,在邮件平台中以群的概念建立分类、导入联系人,快速推送相对应的、适合的营销方案。

图片:image005.jpg



   技巧三:把握主题与发件人
   邮件的主题——第一时间告诉客户是否应该打开。因此,可直截了当表明意图。但,目前服务商设置的过滤程序,很容易分辨出主题行的营销意味。为了减少邮件被被划分为垃圾、广告行列,适当的测试与修改至关重要。
   发件人信息,则是告诉客户是否需要删除该邮件。熟悉的发件人,是邮件与客户建立信任关系的基础。因此,使用邮件模板,自定义发件人功能必不可少。打开发件人设置进行编辑,也可同时添加多个新发件人。

图片:image007.jpg



   技巧四:使用API接口
  API接口,即通过与网站进行对接,实现程序自动对某个或某些邮箱发送邮件,最常见的应用,如发送验证码、订单信息、注册成功信息、相关提醒等。
   对客户在网站的行为,在第一时间给予回复,是体现网站高效、优质的有效途径。那么,如何设置呢?进入邮件平台的系统设置,找到API设置,下载API文档阅读,然后,交给技术人员进行程序实现就OK啦!

图片:image008.jpg


       

 

 

本文作者:53快服

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值