Numpy中的矩阵向量乘法分别是np.dot(a,b)、np.multiply(a,b) 以及*,刚开始接触的时候比较模糊,于是自己整理了一下。先来介绍理论,然后再结合例子深入了解一下。
| 数组 | 矩阵 | |
|---|---|---|
| 元素乘法 | np.multiply(a,b) 或 a*b | np.multiply(a,b) |
| 矩阵乘法 | np.dot(a,b) | np.dot(a,b) 或 a* b |
我们可以看到:
当对象是数组时候,对应元素乘法使用 np.multiply(a,b) 或a * b,矩阵乘法用np.dot(a,b)
当对象是矩阵时候,对应元素乘法使用np.multiply(a,b) , 矩阵乘法用np.dot(a,b)或 a*b
注:数组和矩阵对应元素相乘,输出与相乘数组/矩阵的大小一致
对于 np.array 对象
>>> a
array([[1, 2],
[3, 4]])
当对象是数组时候,元素乘法使用 np.multiply(a,b) 或 a*b
>>> np.multiply(a,a)
array([[ 1, 4],
[ 9,

本文详细解析了Numpy中矩阵与向量的乘法操作,包括元素乘法np.multiply(a,b)和矩阵乘法np.dot(a,b),通过实例展示了不同情况下的应用,适合初学者理解Numpy的乘法运算。
最低0.47元/天 解锁文章
1089

被折叠的 条评论
为什么被折叠?



