对于numpy array
当有如下情景,我需要4维tensor,(b,c,w,h), 而写的程序是单张图片遍历的,即每张图片(c,w,h),这时,就需要先用一个list,然后每次append,到最后
np.stack(list)
默认是从第0维开始stack
对于tensor
如果我有一个(b,1,w,h)的tensor word_pred,我需要在第二维加一项 1-pred,让它变成(b,2,w,h)
首先对于(b,c,w,h)的word_pred是可以直接减的,因为有广播机制
然后
torch.cat((pred_word,1-pred_word),dim=1)
如果用torch.stack的话会给你增加一维
多维tensor/numpy array的拼接(np.stack, torch.cat)
最新推荐文章于 2023-06-12 20:35:48 发布