机器学习中的数学——距离定义(二十二):海林格距离(Hellinger Distance)

分类目录:《机器学习中的数学》总目录
相关文章:
· 距离定义:基础知识
· 距离定义(一):欧几里得距离(Euclidean Distance)
· 距离定义(二):曼哈顿距离(Manhattan Distance)
· 距离定义(三):闵可夫斯基距离(Minkowski Distance)
· 距离定义(四):切比雪夫距离(Chebyshev Distance)
· 距离定义(五):标准化的欧几里得距离(Standardized Euclidean Distance)
· 距离定义(六):马氏距离(Mahalanobis Distance)
· 距离定义(七):兰氏距离(Lance and Williams Distance)/堪培拉距离(Canberra Distance)
· 距离定义(八):余弦距离(Cosine Distance)
· 距离定义(九):测地距离(Geodesic Distance)
· 距离定义(十): 布雷柯蒂斯距离(Bray Curtis Distance)
· 距离定义(十一):汉明距离(Hamming Distance)
· 距离定义(十二):编辑距离(Edit Distance,Levenshtein Distance)
· 距离定义(十三):杰卡德距离(Jaccard Distance)和杰卡德相似系数(Jaccard Similarity Coefficient)
· 距离定义(十四):Ochiia系数(Ochiia Coefficient)
· 距离定义(十五):Dice系数(Dice Coefficient)
· 距离定义(十六):豪斯多夫距离(Hausdorff Distance)
· 距离定义(十七):皮尔逊相关系数(Pearson Correlation)
· 距离定义(十八):卡方距离(Chi-square Measure)
· 距离定义(十九):交叉熵(Cross Entropy)
· 距离定义(二十):相对熵(Relative Entropy)/KL散度(Kullback-Leibler Divergence)
· 距离定义(二十一):JS散度(Jensen–Shannon Divergence)
· 距离定义(二十二):海林格距离(Hellinger Distance)
· 距离定义(二十三):α-散度(α-Divergence)
· 距离定义(二十四):F-散度(F-Divergence)
· 距离定义(二十五):布雷格曼散度(Bregman Divergence)
· 距离定义(二十六):Wasserstein距离(Wasserstei Distance)/EM距离(Earth-Mover Distance)
· 距离定义(二十七):巴氏距离(Bhattacharyya Distance)
· 距离定义(二十八):最大均值差异(Maximum Mean Discrepancy, MMD)
· 距离定义(二十九):点间互信息(Pointwise Mutual Information, PMI)


我们假设 p p p q q q是两个概率测度,并且它们对于第三个概率测度 λ \lambda λ来说是绝对连续的,则 p p p q q q的海林格距离(Hellinger Distance)的平方被定义如下:
H 2 ( p , q ) = 1 2 ∫ ( d p d λ − d q d λ ) 2 d λ H^2(p,q)=\frac{1}{2}\int(\sqrt{\frac{\text{d}p}{\text{d}\lambda}}-\sqrt{\frac{\text{d}q}{\text{d}\lambda}})^2\text{d}\lambda H2(p,q)=21(dλdp dλdq )2dλ

这里的 d p d λ \frac{\text{d}p}{\text{d}\lambda} dλdp d q d λ \frac{\text{d}q}{\text{d}\lambda} dλdq分别是 p p p q q q的Radon–Nikodym微分。这里的定义是与 λ \lambda λ无关的,因此当我们用另外一个概率测度替换 λ \lambda λ时,只要 p p p q q q关于它绝对连续,那么上式就不变。为了简单起见,我们通常把上式改写为:
H 2 ( p , q ) = 1 2 ∫ ( d p − d q ) 2 d λ H^2(p,q)=\frac{1}{2}\int(\sqrt{\text{d}p}-\sqrt{\text{d}q})^2\text{d}\lambda H2(p,q)=21(dp dq )2dλ

为了在经典的概率论框架下定义Hellinger距离,我们通常将 λ \lambda λ定义为Lebesgue度量,此时 d p d λ \frac{\text{d}p}{\text{d}\lambda} dλdp d q d λ \frac{\text{d}q}{\text{d}\lambda} dλdq就变为了我们通常所说的概率密度函数,那么可以用以下的积分形式表示Hellinger距离:
H 2 ( p , q ) = 1 2 ∫ ( d p d λ − d q d λ ) 2 d λ = 1 − ∫ d p d λ d q d λ d λ H^2(p,q)=\frac{1}{2}\int(\sqrt{\frac{\text{d}p}{\text{d}\lambda}}-\sqrt{\frac{\text{d}q}{\text{d}\lambda}})^2\text{d}\lambda=1-\int\sqrt{\frac{\text{d}p}{\text{d}\lambda} \frac{\text{d}q}{\text{d}\lambda}}\text{d}\lambda H2(p,q)=21(dλdp dλdq )2dλ=1dλdpdλdq dλ

上述等式可以通过展开平方项得到,注意到任何概率密度函数在其定义域上的积分为1,根据柯西-施瓦茨不等式(Cauchy-Schwarz Inequality),Hellinger距离满足如下性质:
0 ≤ H ( p , q ) ≤ 1 0\leq H(p,q)\leq 1 0H(p,q)1

对于两个离散概率分布 p = ( p 1 , p 2 , ⋯   , p n ) p=(p_1, p_2, \cdots, p_n) p=(p1,p2,,pn) q = ( q 1 , q 2 , ⋯   , q n ) q=(q_1, q_2, \cdots, q_n) q=(q1,q2,,qn),它们的Hellinger距离可以定义如下:
H ( p , q ) = 1 2 ∑ i = 1 n ( p i − q i ) 2 H(p, q)=\frac{1}{\sqrt{2}}\sqrt{\sum_{i=1}^n(\sqrt{p_i}-\sqrt{q_i})^2} H(p,q)=2 1i=1n(pi qi )2

上式也可以被看作两个离散概率分布平方根向量的欧几里得距离
H ( p , q ) = 1 2 ∣ ∣ p − q ∣ ∣ 2 H(p, q)=\frac{1}{\sqrt{2}}||\sqrt{p}-\sqrt{q}||_2 H(p,q)=2 1p q 2

也可以写成:
1 − H 2 ( p , q ) = ∑ i = 1 n p i q i 1 - H^2(p, q)=\sum_{i=1}^n\sqrt{p_iq_i} 1H2(p,q)=i=1npiqi

下面我们来看一下海林格距离的Python实现:

def HellingerDistance(p, q):
	import numpy as np
    p = np.array(p)
    q = np.array(q)
    M = (p + q)/2
    return 1/np.sqrt(2)*np.linalg.norm(np.sqrt(p)-np.sqrt(q))
  • 13
    点赞
  • 94
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

von Neumann

您的赞赏是我创作最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值