深入浅出Pytorch函数——torch.sort

Pytorch的torch.sort函数用于对张量进行排序,可以指定维度、排序顺序(升序或降序)以及是否保持排序稳定性。该函数返回排序后的值和原始元素的索引。示例展示了在不同参数设置下的排序结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类目录:《深入浅出Pytorch函数》总目录


按照值沿给定维度对输入张量的元素进行排序。如果未给定dim,则选择输入的最后一个维度。若descending被指定为True,则元素按值降序排列,否则为升序。如果stableTrue,则排序例程变为稳定,从而保持等价元素的顺序。

语法
torch.sort(input, dim=-1, descending=False, stable=False, *, out=None)
参数
  • input:[Tensor] 输入张量
  • dim:[可选, int] 待排序的维度
  • descending :[可选, bool] 排序顺序,False为升序,True为降序,默认为升序
  • stable :[可选, bool] 指示排序是否稳定,如果为True,则等价元素的顺序得到保留
返回值

元组(values, indices),其中values是排序的值,indices是原始输入张量中元素的索引。

实例
>>> x = torch.randn(3, 4)
>>> sorted, indices = torch.sort(x)
>>> sorted
tensor([[-0.2162,  0.0608,  0.6719,  2.3332],
        [-0.5793,  0.0061,  0.6058,  0.9497],
        [-0.5071,  0.3343,  0.9553,  1.0960]])
>>> indices
tensor([[ 1,  0,  2,  3],
        [ 3,  1,  0,  2],
        [ 0,  3,  1,  2]])

>>> sorted, indices = torch.sort(x, 0)
>>> sorted
tensor([[-0.5071, -0.2162,  0.6719, -0.5793],
        [ 0.0608,  0.0061,  0.9497,  0.3343],
        [ 0.6058,  0.9553,  1.0960,  2.3332]])
>>> indices
tensor([[ 2,  0,  0,  1],
        [ 0,  1,  1,  2],
        [ 1,  2,  2,  0]])
        
>>> x = torch.tensor([0, 1] * 9)
>>> x.sort()
torch.return_types.sort(
    values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
    indices=tensor([ 2, 16,  4,  6, 14,  8,  0, 10, 12,  9, 17, 15, 13, 11,  7,  5,  3,  1]))
>>> x.sort(stable=True)
torch.return_types.sort(
    values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
    indices=tensor([ 0,  2,  4,  6,  8, 10, 12, 14, 16,  1,  3,  5,  7,  9, 11, 13, 15, 17]))
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

von Neumann

您的赞赏是我创作最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值