YOLOv9来咧!

论文:

https://arxiv.org/html/2402.13616v1​arxiv.org/html/2402.13616v1
github代码
GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information​

主要内容

主要是提出了两点:

一、提出使用PGI(Programmable Gradient Information,可编程梯度信息)来解决信息瓶颈问题和深度监督机制不适合轻量级神经网络的问题。

论文中图3

图中(d)为提出的PGI。PGI主要包括三个组成部分,即(1)主分支,(2)辅助可逆分支,(3)多级辅助信息。其中推理过程仅使用 main 分支,因此不需要任何额外的推理成本。辅助可逆分支(auxiliary reversible branch)处理神经网络深化带来的问题。网络深化会造成信息瓶颈。多级辅助分支(multi-level auxiliary information),旨在处理深度监管导致的误差累积问题。

二、设计了GELAN(Generalized ELAN ,广义ELAN),一个高效、轻量级的神经网络。

在这里插入图片描述
图c为提出的GELAN,它结合了CSPNet 和 ELAN 。区别与ELAN,将ELAN仅使用卷积层堆叠的功能推广到可以使用任何计算块的新架构中(即图c中any block)。
在yolov9中,gelan被作为block用在了backbone中,关于Gyolov9的backbone以及GELAN运用详细信息见:

效果如下

在精度方面,新方法优于使用大数据集预训练的RT DETR [ 43],在参数利用率方面也优于基于深度卷积的设计YOLO MS 。
PGI的引入使得轻量级模型和深度模型都能在精度上实现显著的提升。结合PGI和GELAN设计的YOLOv9,展现了很强的竞争力。其出色的设计使得深度模型与YOLOv8相比,参数数量减少了49%,计算量减少了43%,但在MS COCO数据集上仍有0.6%的AP提升。
在这里插入图片描述

引用:
@article{wang2024yolov9,title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information},author={Wang, Chien-Yao and Liao, Hong-Yuan Mark},booktitle={arXiv preprint arXiv:2402.13616}, year={2024}}
@article{chang2023yolor, title={{YOLOR}-Based Multi-Task Learning}, author={Chang, Hung-Shuo and Wang, Chien-Yao and Wang, Richard Robert and Chou, Gene and Liao, Hong-Yuan Mark}, ournal={arXiv preprint arXiv:2309.16921}, year={2023}}

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值