论文地址:
Spatial As Deep: Spatial CNN for Traffic Scene Understanding.
Abstract
现今的CNN模型通常是由卷积块堆叠构建,虽然CNN有强大的特征提取能力,但现存CNN架构没有足够充分探索图像行和列上的空间关系能力。这些关系对于学习强先验形状的对象很重要,尤其是外观(图像像素)连贯性很弱。例如交通线,车道经常会被遮挡,或者压根就没在路上画车道线。
本文提出了Spatial CNN(CNN),它将传统的卷积层接层(layer-by-layer)的连接形式的转为feature map中片连片卷积(slice-by-slice)的形式,使得图中像素行和列之间能够传递信息。这特别适用于检测长距离连续形状的目标或大型目标,有着极强的空间关系但是外观线索较差的目标,例如交通线,电线杆和墙。
scnn与cnn的明显对比如下:
图片从左到右依次为:输入特征图;CNN输出图;SCNN输出图。
介绍
自动驾驶中最具挑战的任务之一是交通场景理解,包括计算机视觉任务下的车道检测和语义分割。车道检测帮助指导车辆,语义分割提供更多关于周围环境目标的细节位置。但在实际情况下,因为有许多恶劣条件,这些任务可能非常具有挑战性。对于交通场景理解的另一个挑战是,在许多情况下需要在有强结构先验知识下处理外形线索不多的目标,例如交通线,杆状物等,这些具有长距离连续的形状,常常有很大部分被遮挡。
得益于强大的学习表示能力,CNN将视觉理解推向了一个新的高度。但是这依然不能很好地处理外形线索不多的有强结构先验的目标,而人类可以推断它们的位置并填充遮挡的部分。
为了解决这个问题,论文提出了SCNN,将深度卷积神经网络推广到丰富空间层次。
传统的CNN,任意层接收上层的数据作输入,再作卷积并加激活传给下一层,这个过程是顺序执行的。与之类似的是,SCNN将feature map的行或列也看成layer,也使用卷积加非线性激活,从而实现空间上的深度神经网络。这使得空间信息能够在同层的神经元上传播,增强空间信息进而对于识别结构化对象特别有效。
相关工作:
对于车道检测任务,大多数现有的算法都是依赖于低级手工特征,这让模型难以在恶劣条件下工作。2015年有工作尝试使用深度学习方案用于车道检测,但苦于没有大的广泛的数据集(说这个的原因是论文建立了一个大的数据集~)。对于语义分割,基于CNN的方案的已经成为主流并取得了巨大的成功。
对于在深度神经网络中使用空间信息:有工作使用RNN按每列和行传递信息,但每个像素只能接收同一行或列的信息。也有工作使用LSTM变体探索语义分割的上下文信息,但计算消耗较大。也有工作尝试结合CNN和图模型(例如MRF或CRF),通过大卷积核传递信息.
与上述方案相比,SCNN有如下几个优势:
- 消息传递比传统的MRF/CRF更有计算效率
- 消息传递使用的是残差,这更易训练
- SCNN很灵活,适用于多种深度神经网络
空间卷积神经网络
车道线数据集
本文提出了一个关于交通车道检测的大规模数据集。以前的车道检测数据集(KITTI,CamVid)要不就是太简单,要不就是数据太小。最近的(Caltech,TuSimple)数据集是在交通受限状态下建立的,这样的数据车流量少且路标较为清晰。这些数据集没有包括一些车道线模糊,条件恶劣的情况,而这些情况人类可以推断出来,且这具有很高的实用价值。
论文提出的数据集是由六辆车在北京不同时间录制的,超过55个小时共收集了133,235 张图片,这超过TuSimple 数据集20倍了。论文分成88880张作为训练集, 9675作为验证集,34680做测试集。图像的大小为 1640 × 590 1640×590 1640×590。下图是示例和简介:
数据集内包括城市、农村和高速公路等场景,北京作为世界上最大和最拥挤的城市之一,对应的车道检测数据提供了很多具有挑战性的交通场景。论文将测试集分为正常和8个具有挑战性的类别,这对应上图 (a)的9个示例情况。图(b)显示的是挑战性的场景站数据集的比例(共72.3%)。
对于每一张图片,使用三条线注释车道,如前面所述,许多情况下车道是被遮挡的或看不见的。而这在实际情况下是很重要的,车道检测算法需要能够在这种情况下工作。对此,标注工作根据上下文也做了标注,如图(2)(4)所示。对于图(1)的情况我们不对障碍的另一边做标注,将精力集中于最受关注的部分。
空间CNN
传统的关于空间关系的建模方法是基于概率图模型的,例如马尔科夫随机场(MRF)或条件随机场(CRF)。最近有工作将概率图与CNN相结合,如图 (a)所示:
CRF可化为平均场,算法可以用神经网络来实现,具体来说,过程分为:
- 标准化:CNN的输出作为一元势函数,并通过Softmax操作标准化
- 信息传递:可通过大内核的逐通道卷积实现(对于DenseCRF,内核大小将覆盖整张图片,内核权重取决于图片)
- 兼容性转换:使用 1 × 1 1×1 1×1的卷积实现
- 添加一元势:整个过程迭代N次得到最终输出
可以看到传统方法在传递信息时,每个像素点接受来自全图其他像素的信息,这在计算上是非常昂贵的,难以应用于实时系统。且对于MRF的大卷积核权重很难学。这些方法是应用在CNN的输出上的,论文认为CNN的隐藏层,包含了丰富的空间关系,可更好的用于处理空间关系。
论文提出了Spatial CNN,这里的Spatial不是指Spatial Convolution,而是CNN通过特征的设计架构传递空间信息。SCNN更有效的学习空间关系,能平滑的找出连续的有强先验的结构目标。SCNN的整体架构如下:
图中SCNN的下表:D、U、R、L分别表示向下、向上、向右、向左。
以SCNN_D为例:
考虑到SCNN应用在三维张量 C × H × W 上, C , H , W 分别代表通道数,长和宽。为了实现空间信息传递,将张量切分成 H片(slice),先将第一片送到尺寸为 C × w的卷积层( w为卷积核的宽度)。传统的CNN是将这层的输出传递给下一层,而这里是将这片输出相加到下一片作为新的一片。接着下一片继续应用卷积(这里卷积核共享),直到处理完所有片。
具体来讲,假设我们有一个三维的张量 K,其中 K i,j,k记为最后一片中通道 i的元素和当前片中通道 j j j的元素之间的权重,这两个元素之间偏移为 k 列。同样的将 Xi,j,k记录为张量X的元素,其中 i , j , k分别指代通道,行,列.
则SCNN的前向计算为:
其中 f是非线性激活函数 ReLU。X加 ′ 代表示更新后的值,注意所有的片共享一组卷积核,SCNN是一种RNN。
分析
SCNN与传统的Dense MRF/CRF相比,在信息传递方向不同,示意图如下所示:
- 图(a):MRF/CRF中每个像素点会直接接收其他所有像素点的信息(大卷积核实现),这其中有许多冗余计算。
- 图(b):在SCNN中,信息是顺序传递的。
假设张量有H行 W列,对于密集的MRF/CRF来讲,在每两个HW像素之间都存在信息传递,对于 niter 次迭代,传递了 niter W2H2次信息。在SCNN中,每个像素只接受来自 w个像素的信息,共传递了 nderWHw次,其中der der指代传递信息的方向的数量,w为卷积核宽度。
niter 范围在10到100之间,在本文中nder设置为4,对应着四个方向。w设置通常不超过10(图中设置为3)。对于一张有上千行和列的图片来说,SCNN可大幅度减少计算量,而每个像素点依旧能够接收来所有其他像素传递的信息(4个方向的信息传递)。
将传递信息作残差
密集的MRF/CRF内是通过所有加权像素相加,这样的计算花费很大。而RNN是通过梯度来优化的, 考虑到这么多层和列,依据残差网络的经验,论文也采用残差的方式来学习(计算公式描述的残差学习)。这种残差可认为是对原始神经元的修正。实验证明这样的消息传递比基于LSTM的要好。
灵活性
归功于SCNN的计算效率,它可以很方便的集成到CNN的任何部分。通常top hidden layer 包含了丰富的语义信息,这是应用SCNN的理想位置。在完整的SCNN模型中我们在顶层的feature map上用了四个方向的SCNN引入空间信息传递。
测试
论文在自发布的lane detection dataset 和CitySpace数据集做了评估。
普通的目标识别只要划分边界,而车道检测需要精准的预测曲线,一个自然的想法是模型输出曲线的概率图,以像素级目标来训练网络,这类似于语义分割任务。我们希望网络能够直接区分不同车道标记,这样鲁棒性更好。共有4中类型的车道线。输出的概率图经过一个小网络预测车道标记是否存在。
对于存在值大于0.5的车道标记,在对应的概率图每20行搜索以获得最高的响应位置,然后通过三次样条函数连接这些点(cubic splines)。这就是最终的预测。
上图(a)显示了baseline和LargeFOV之间的差异:
- fc7输出通道为128
- fc6扩张卷积的扩张率为4
- 每个ReLU层前加了BN层
- 添加了一个小型网络用于预测是否存在车道线
训练时,输入和输出的图片分辨率设置为800×288(约为原图的二分之一)。目标线的宽度设置为16。考虑背景和车道标记之间的不平衡标签,背景损失乘以0.4。
评估
为了判断车道标记是否正确的检测到,论文将车道标记视为宽度为30像素的线,计算ground truth和预测值之间的IoU.如果预测的IoU大于某个阈值,则认为是true positives (TP). 如下图6所示,这里设置了0.3和0.5作为阈值,分别对应松散和严格的评估。
然后使用
为最终评价指标,其中
设置β=1表示调和平均值。