令为一个函数,其中是的一个子集,是中的一个向量。如果存在一个向量,使得对于满足的每一个序列,都有收敛到,那么记。如果存在一个向量,使得对于满足且(对应地,)的每一个序列,都有收敛到,那么记[对应地,]。
连续
对于函数,如果成立,则称函数在向量处连续(continuous)。
对于实值函数,用ε-δ语言描述为:
如果,,当,时,有,则称函数是连续的。
左/右连续
对于函数,如果[对应地,]成立,则称函数在向量处右连续(right-continuous)[对应地,左连续(left-continuous)]。
对于实值函数,用ε-δ语言描述为:
如果,,当,[对应地,]时,有,则称函数是右连续[对应地,左连续]的。
上/下半连续
对于实值函数,如果对于每一个收敛到的序列,都有[对应地,],则称函数在向量处上半连续(upper-continuous)[对应地,下半连续(lower-continuous)]。
用ε-δ语言描述为:
如果,,当,时,有[对应地,],则称函数是上半连续[对应地,下半连续]的。
强制函数
函数,如果对于每一个满足的序列,都有,则称函数是强制的。
相关性质
(a) 上的任意范数是连续函数。
(b)令和为连续函数,复合函数是一个连续函数,定义。
(c)令连续,令为上的一个开子集(对应地,闭子集),那么的原像是开集(对应地,闭集)。
(d)令连续,为上的一个紧子集,那么的像也是紧集。
(e)令为上的闭子集,在的所有点处下半连续,那么截集对于所有的均是闭集。