令为一个函数,其中
是
的一个子集,
是
中的一个向量。如果存在一个向量
,使得对于满足
的每一个序列
,都有
收敛到
,那么记
。如果存在一个向量
,使得对于满足
且
(对应地,
)的每一个序列
,都有
收敛到
,那么记
[对应地,
]。
连续
对于函数,如果
成立,则称函数
在向量
处连续(continuous)。
对于实值函数,用ε-δ语言描述为:
如果,
,当
,
时,有
,则称函数
是连续的。
左/右连续
对于函数,如果
[对应地,
]成立,则称函数
在向量
处右连续(right-continuous)[对应地,左连续(left-continuous)]。
对于实值函数,用ε-δ语言描述为:
如果,
,当
,
[对应地,
]时,有
,则称函数
是右连续[对应地,左连续]的。
上/下半连续
对于实值函数,如果对于每一个收敛到
的序列
,都有
[对应地,
],则称函数
在向量
处上半连续(upper-continuous)[对应地,下半连续(lower-continuous)]。
用ε-δ语言描述为:
如果,
,当
,
时,有
[对应地,
],则称函数
是上半连续[对应地,下半连续]的。
强制函数
函数,如果对于每一个满足
的序列
,都有
,则称函数
是强制的。
相关性质
(a) 上的任意范数是连续函数。
(b)令和
为连续函数,复合函数
是一个连续函数,定义
。
(c)令连续,令
为
上的一个开子集(对应地,闭子集),那么
的原像
是开集(对应地,闭集)。
(d)令连续,
为
上的一个紧子集,那么
的像
也是紧集。
(e)令为
上的闭子集,
在
的所有点处下半连续,那么截集
对于所有的
均是闭集。