论文阅读
文章平均质量分 93
好好学习,天天向上
理心炼丹
只争朝夕
展开
-
【水下图像增强】Enhancing Underwater Imagery using Generative Adversarial Networks
自动水下航行器(Autonomous underwater vehicles (AUVs))依靠各种传感器——声学、惯性和视觉(acoustic, inertial and visual)——进行智能决策。由于其 非侵入性、被动性和高信息量,视觉(non-intrusive, passive nature, and high information content) 是一种有吸引力的传感方式,特别是在较浅的深度。原创 2023-03-05 21:18:50 · 3572 阅读 · 1 评论 -
【论文阅读】SCRFD: Sample and Computation 重分配的高效人脸检测
尽管在 非受控(uncontrolled)人脸检测 方面已经取得了巨大的进展,但低计算成本和高精度的 高效人脸检测仍然是一个公开的挑战。本文指出训练数据采样和计算分布策略(training data sampling and computation distribution strategies)是高效准确的人脸检测的关键。原创 2023-02-21 17:47:47 · 1265 阅读 · 4 评论 -
【论文阅读】SSR-Net: 一个小型的 软分段回归网络 用于年龄估计
本文提出了一种新的 CNN 模型,称为 Soft Stagewise Regression Network (SSR-Net),使用从小型模型对单个图像进行年龄估计。受 DEX 的启发,我们通过执行多类分类来解决年龄估计问题,然后通过计算期望值将分类结果转化为回归。SSR-Net 采用由粗到细的策略并执行 多阶段的多类分类。每个阶段只负责完善其前一阶段的决策,以获得更准确的年龄估计。因此,每个阶段执行的任务很少,需要的神经元也很少,从而大大减少了模型的大小。原创 2023-02-21 12:49:15 · 1062 阅读 · 0 评论 -
【目标检测】YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications 论文翻译
多年来,YOLO系列一直是高效物体检测的事实上的工业级标准。YOLO社区以压倒性的优势丰富了它在众多硬件平台和丰富场景中的应用。在这份技术报告中,我们努力把它的极限推到一个新的水平,以坚定不移的心态向工业应用迈进。考虑到现实环境中对速度和 accuracy 的不同要求,我们广泛地研究了来自工业界或学术界的最新的物体检测进展。具体来说,我们大量吸收了最近的网络设计、训练策略、测试技术、量化和优化方法的思想。在此基础上,我们整合了我们的想法和实践,建立了一套不同规模的 可部署(原创 2022-10-31 14:04:38 · 919 阅读 · 0 评论 -
【论文阅读】YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
在 5 FPS 到 160 FPS 的范围内,YOLOv7 在 speed 和accuracy 上都超过了所有已知的目标检测器,并且在 GPU V100上 30 FPS 或更高的实时目标检测器中,YOLOv7 有最高的 56.8% AP的accuracy。YOLOv7-E6 目标检测器( 56FPS V100,55.9%AP) 比基于 transformer 的检测器 SWINL Cascade-MASK R-CNN(9.2 FPS A100,53.9%AP) 的 speed ............原创 2022-07-16 17:19:42 · 4634 阅读 · 0 评论 -
【人脸识别】ArcFace: Additive Angular Margin Loss for Deep Face Recognition
利用深度卷积神经网络(DCNNs)进行大规模人脸识别的特征学习的主要挑战之一是设计适当的损失函数来增强识别能力。Centre loss 惩罚 深度特征与其对应的类中心在欧氏空间的距离,以实现类内紧致。SphereFace 假设最后一个全连接层中的线性变换矩阵可以用作角空间中的类中心的表示,并以乘法的方式惩罚深度特征与其相应权值之间的角度。最近,一个流行的研究方向是,将 margins 纳入成熟的损失函数,以最大限度地提高类别可分离性。本文提出了一种基于Additive Angular ......原创 2022-07-13 13:09:21 · 1411 阅读 · 0 评论 -
【日志异常检测】DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning
异常检测是建立安全可靠系统的关键步骤。系统日志的主要目的是记录系统状态和各种关键时刻的重要事件,以帮助调试系统故障和执行根本原因分析。这种日志数据在几乎所有的计算机系统中都是普遍可用的。日志数据是理解系统状态和性能问题的重要而有价值的资源;因此,各种系统日志自然是在线监测和异常检测的良好信息源。我们提出 DeepLog,一种利用长短期记忆(LSTM)的深度神经网络模型,将系统日志建模为自然语言序列。这允许DeepLog从正常执行中自动学习日志模式,当日志模式偏离 从正常执行下日志数据训练的模型 时,检测异.原创 2022-07-11 17:13:17 · 2843 阅读 · 0 评论 -
【时间序列异常检测】Anomaly Detection for IoT Time-Series Data: A Survey
异常检测是一个应用领域广泛的问题,它涉及到识别新的或意外的观测数据或序列被捕获的数据。目前的大多数异常检测方法都是针对个别用例的,需要专家对该方法以及应用该方法的情况有一定的了解。物联网作为一个快速发展的领域,为实施这类数据分析提供了许多机会,然而,由于物联网的性质,这可能是困难的。本文介绍了将异常检测技术应用于物联网数据时可能遇到的挑战的背景,并列举了文献中物联网异常检测应用的例子。我们讨论了在不同领域开发的一系列方法,而不限于物联网(由于该应用的相对新颖性)。最后,我们总结了当前在异常检........原创 2022-07-07 17:47:36 · 3811 阅读 · 0 评论 -
【时间序列预测】ESRNN
本文介绍了 M4预测比赛 的获奖作品。该提交利用了一个动态计算图神经网络系统,使标准指数平滑( Exponential Smoothing-ES)模型与先进的 LSTM 网络混合到一个共同的框架。结果是一种混合层次预测方法。 关键词:预测比赛,M4,动态计算图,自动微分,LSTM网络,指数平滑 在过去的几十年里,神经网络(NNs)以及其他机器学习(ML)算法在各个领域取得了显著的成功,其中包括图像和语音识别、自然语言处理(NLP)、自动驾驶汽车和游戏(Makridakis, 20原创 2022-06-10 00:27:37 · 2635 阅读 · 0 评论 -
【时间序列数据增强】Time Series Data Augmentation for Deep Learning: A Survey
深度学习最近在许多时间序列分析任务中表现得非常好。深度神经网络的优越性能很大程度上依赖于大量的训练数据来避免过拟合。然而,许多现实世界的时间序列应用的标记数据可能是有限的,如医学时间序列的分类和 AIOps 的异常检测。作为提高训练数据规模和质量的有效方法,数据增强是深度学习模型成功应用于时间序列数据的关键。本文系统地回顾了不同的时间序列数据增强方法。我们建议对这些方法进行分类,然后通过强调它们的优点和局限性,对这些方法进行结构化审查。我们还实证比较了不同的数据增强方法的不同任务,包括时间序列分类,异常检测原创 2022-06-23 15:40:27 · 2796 阅读 · 0 评论 -
【网络故障原因定位】NETRCA: AN EFFECTIVE NETWORK FAULT CAUSE LOCALIZATION
定位网络故障的根本原因对网络的运行和维护至关重要。然而,由于复杂的网络架构和无线环境,以及有限的标注数据,准确定位真正的根源是具有挑战性的。在本文中,我们提出了一种新的算法NetRCA来处理这个问题。首先,我们从原始数据中提取有效的衍生特征,考虑时间、方向、属性和交互特征。其次,我们采用多元时间序列相似度和标签传播的方法,从有标签和无标签的数据中生成新的训练数据,以克服有标签样本的不足。再次,我们设计了一个结合XGBoost、规则集学习、属性模型和图算法的集成模型,以充分利用所有数据信息,提高性能。最后,对原创 2022-06-23 14:44:15 · 707 阅读 · 0 评论 -
【Transformer架构】Transformers are RNNs (linear transformer)
Transformers 在一些任务中取得了显著的性能,但由于其二次复杂度(相对于输入长度),对于非常长的序列,它们的速度会非常慢。为了解决这一限制,我们将 self-attention 表示为核特征图的线性点积,并利用矩阵乘积的结合性将复杂度从降低到O (N),其中N为序列长度。我们展示了这种公式允许迭代实现,极大地加速了自回归Transformers ,并揭示了它们与循环神经网络的关系。我们的线性Transformers 实现了与普通Transformers 相似的性能,并且在非常长的序列的自回归预测方原创 2022-06-23 11:52:34 · 7490 阅读 · 3 评论 -
【UBA】用户行为建模多篇论文概述
用户行为建模对于工业应用很重要,比如人口统计属性预测、内容推荐和目标广告。现有方法将行为日志表示为被采用 items 的序列,并找到序列模式; 然而,行为日志中具体的位置和时间信息,反映动态和周期性的模式,结合空间维度,可以对用户建模和预测他们的特征。在这项工作中,我们提出了一种基于图神经网络的新模型,用于从时空行为数据中学习用户表示。一个行为日志包括一个会话的序列; 一个会话有一个位置、开始时间、结束时间和一个被采用 items 的序列。我们的模型架构包含了两个网络架构。一个网络架构是 items、会话和原创 2022-06-21 11:53:21 · 1113 阅读 · 0 评论 -
【时间序列预测】Are Transformers Effective for Time Series Forecasting?
最近,基于Transformer 的时间序列预测(TSF)任务解决方案激增,特别是具有挑战性的长期TSF问题。Transformer 架构依靠 self-attention 有效提取长序列中成对元素之间的语义关联,这种关联具有一定的排列不变性和“反排序”特性(permutation-invariant and “anti-ordering”)。然而,在时间序列建模中,我们要提取连续点的有序集合之间的时间关系。因此,基于Transformer 的技术是否是“长期”时间序列预测的正确解决方案是一个值得研究的有趣原创 2022-06-06 13:29:05 · 1729 阅读 · 0 评论 -
【时间序列预测】Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting (第一篇)
论文链接:Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting.摘要许多真实世界的应用需要对长序列时间序列进行预测,如用电规划。长序列时间序列预测(Long sequence time-series forecasting LSTF)对模型的预测能力提出了很高的要求,即能够有效地捕捉输出和输入之间精确的长期依赖耦合(long-range dependency coupling)。最近的研...原创 2022-05-27 17:43:57 · 1634 阅读 · 0 评论 -
【时间序列异常检测】Anomaly-Transformer
时间序列异常点的无监督检测是一个具有挑战性的问题,需要模型推导出一个可区分的判据。以往的方法主要通过学习点表示或成对关联来解决这个问题,但这两种方法都不足以对复杂的动力学进行推理。近年来,Transformers 在点向表示和成对关联的统一建模方面表现出了强大的能力,我们发现每个时间点的 self-attention 权重分布可以体现出与整个序列的丰富关联。我们的重点观察是,由于异常非常罕见,很难建立从异常点到整个序列的有用的关联,因此异常关联主要集中在其相邻时间点上。这种 adjacent-concent原创 2022-05-20 11:15:32 · 6570 阅读 · 12 评论 -
【时间序列预测】Autoformer 长时间序列预测
论文链接:http://xxx.itp.ac.cn/pdf/2106.13008.pdfAbstract延长预测时间是极端天气预警和长期能源消耗规划等实际应用的关键需求。本文研究时间序列的长期预测问题。先前的基于 Transformer 的模型采用各种 self-attention 机制来发现长期依赖关系。然而,长期未来的复杂时间模式使基于 Transformer 的模型无法找到可靠的依赖关系。此外,Transformers 必须采用稀疏版本的 point-wise self-attention..原创 2022-05-14 18:55:56 · 9462 阅读 · 0 评论 -
【目标检测】CenterNet
论文地址:https://arxiv.org/pdf/1904.07850.pdf代码地址:CenterNet: Object detection, 3D detection, and pose estimation using center point detection原创 2022-04-14 23:44:33 · 2810 阅读 · 0 评论 -
【目标检测-YOLO】YOLOv3
YOLOv3: An Incremental ImprovementAbstractAt 320*320 YOLOv3 runs in 22 ms at 28.2 mAP, as accurate as SSD but three times faster. When we look at the old .5 IOU mAP detection metric YOLOv3 is quite good. It achieves 57.9 AP50 in 51 ms on a Titan X, com原创 2022-02-25 00:06:45 · 1945 阅读 · 0 评论 -
【目标检测-YOLO】YOLOX(第一篇)
文章链接:https://arxiv.org/pdf/2107.08430.pdfYOLOX是2021年8月 旷视发布的一篇论文,它是继YOLOv1后第一篇Anchor-free 的YOLO目标检测框架。本文对论文进行学习。YOLOX: Exceeding YOLO Series in 2021摘要YOLOX:anchor-free;decoupled head;label assignment strategy:SimOTAYOLONano:0.91M parameters;1.0原创 2022-04-08 15:06:18 · 3541 阅读 · 0 评论 -
【目标检测-YOLO】PP-YOLO(v3版本)
本文下载的论文是 arXiv:2007.12099v3 [cs.CV] 3 Aug 2020PP-YOLO: An Effective and Effificient Implementation of Object Detector百度摘要Due to limitation of hardware, it is often necessary to sacrififice(牺牲)accuracy to ensure the infer speed of the detector in p.原创 2022-03-31 18:46:04 · 784 阅读 · 0 评论 -
【目标检测-YOLO】YOLOv4(第一篇)
YOLO v4 论文翻译原创 2022-03-05 16:53:50 · 3022 阅读 · 0 评论 -
【目标检测】FPN
Feature Pyramid Networks for Object Detection摘要5 FPS on a GPU(有点慢)1. 引言d 为FPN,速度和 b、c相似,但是更精准。图中,蓝色框表示特征图,粗的框表示语义强壮的特征。These pyramids are scale-invariant in the sense that an object’s scale change is offset by shifting its level in the pyramid.原创 2022-02-24 15:50:25 · 1532 阅读 · 0 评论 -
【目标检测-YOLO】YOLO_V2
接上文YOLOv2 改进在哪里?BN 高分辨率分类器 引入 Anchor 对数据集进行 k-means 聚类得到Anchor 约束模型输出范围 底层细粒度特征 + 顶层特征 多尺度训练BN参考:批量归一化和层归一化_hymn1993的博客-CSDN博客_层归一化通常,将批量规范化层置于全连接层中的仿射变换和激活函数之间。优点:使深度网络容易训练(容易收敛) 改善梯度流(避免梯度消失和爆炸) 可以使用较大学习率,更快收敛 对网络初始化更加 稳健...原创 2022-02-20 21:06:07 · 1446 阅读 · 0 评论 -
【人脸检测】RetinaFace: Single-stage Dense Face Localisation in the Wild
论文代码:https://github.com/deepinsight/insightface/tree/master/RetinaFace.自然场景下精确和高效的人脸定位仍是一个挑战。该文提出了一种robust的single-stage人脸检测器:RetinaFace,它利用联合的额外监督(贡献1)和自监督多任务学习(贡献2),在不同尺度的人脸上进行像素化的人脸定位。五个方面贡献:在WIDER FACE数据集上手工标注了五个面部标志,并观察到在这种额外的监督信号.........原创 2022-02-09 16:53:18 · 2352 阅读 · 0 评论 -
【神经网络架构】Swin Transformer
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows原创 2022-01-27 12:54:30 · 2578 阅读 · 0 评论