【目标检测-YOLO】YOLOv5-5.0v-损失函数(第四篇)

本文详细介绍了YOLOv5的损失函数,包括正负样本分配策略,以及置信度损失、分类损失和回归损失的计算。在正样本分配中,根据锚点比例和预先设定的阈值确定样本,并在不同尺度的头中最多选取9个正样本。负样本则包括不满足条件的锚点。总损失由置信度损失、分类损失和CIOU回归损失组成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLO Input Backbone Neck Head 置信度Loss 坐标回归Loss 分类Loss
v1 448*448 GoogleNet
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理心炼丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值