神经网络架构
文章平均质量分 81
神经网络的Backbone
理心炼丹
只争朝夕
展开
-
【论文阅读】SSR-Net: 一个小型的 软分段回归网络 用于年龄估计
本文提出了一种新的 CNN 模型,称为 Soft Stagewise Regression Network (SSR-Net),使用从小型模型对单个图像进行年龄估计。受 DEX 的启发,我们通过执行多类分类来解决年龄估计问题,然后通过计算期望值将分类结果转化为回归。SSR-Net 采用由粗到细的策略并执行 多阶段的多类分类。每个阶段只负责完善其前一阶段的决策,以获得更准确的年龄估计。因此,每个阶段执行的任务很少,需要的神经元也很少,从而大大减少了模型的大小。原创 2023-02-21 12:49:15 · 1062 阅读 · 0 评论 -
【Transformer架构】Transformers are RNNs (linear transformer)
Transformers 在一些任务中取得了显著的性能,但由于其二次复杂度(相对于输入长度),对于非常长的序列,它们的速度会非常慢。为了解决这一限制,我们将 self-attention 表示为核特征图的线性点积,并利用矩阵乘积的结合性将复杂度从降低到O (N),其中N为序列长度。我们展示了这种公式允许迭代实现,极大地加速了自回归Transformers ,并揭示了它们与循环神经网络的关系。我们的线性Transformers 实现了与普通Transformers 相似的性能,并且在非常长的序列的自回归预测方原创 2022-06-23 11:52:34 · 7490 阅读 · 3 评论 -
【轻量化模型】ShuffleNet v2
轻量化模型之ShuffleNet v2 详解原创 2022-05-11 23:00:09 · 1227 阅读 · 0 评论 -
【轻量化模型】mobilenet v3
MobileNet v3 模型架构 包括 small 和 Large原创 2022-05-10 16:21:37 · 3187 阅读 · 9 评论 -
【轻量化模型】mobilenet v2
MobileNet v2onnx 导出参考:torchvision onnx 模型导出_星魂非梦的博客-CSDN博客1. 模型描述MobileNet v2 来自论文:MobileNetV2: Inverted Residuals and Linear BottlenecksMobileNet v2 架构基于inverted residual(逆残差)结构,inverted residual(逆残差)结构的输入和输出是thin bottleneck 层,与在输入中使用扩展表示的传统残差模...原创 2022-05-07 16:48:07 · 2350 阅读 · 0 评论 -
【轻量化模型】squeezenet
轻量化模型之squeezenet原创 2022-05-05 17:26:55 · 1676 阅读 · 0 评论 -
torchvision onnx 模型导出
torchvision onnx 模型导出原创 2022-05-05 10:57:06 · 1189 阅读 · 0 评论 -
Resnet 代码详解
为了分析网络结构: 下载了 netronsnap install netron # 系统 ubuntu图1 Resnet 整体架构上图中,[ ] 表示一个 block 。对于 18/34 层 Resnetblock 在官方代码中为: BasicBlock 。BasicBlock 根据 identity 是否 下采样 分为两种。在上图中,绿色箭头部分 即 conv3_1, conv4_1, and conv5_1 处 identity 进行 下采样,实现: (1x1 conv, s=2)原创 2022-02-13 23:20:28 · 2482 阅读 · 0 评论 -
【神经网络架构】Swin Transformer细节详解-1
图3。(a) Swin Transformer (Swin-T)的架构;(b)两个连续的Swin Transformer Blocks(符号见公式(3))。W-MSA和SW-MSA分别是具有规则(regular)窗口配置和移动(shifted)窗口配置的multi-head self attention modules。源码:GitHub - microsoft/Swin-Transformer: This is an official implementation for "Swin ...原创 2022-01-29 17:36:59 · 5532 阅读 · 9 评论 -
【神经网络架构】Swin Transformer细节详解-2
图1 2个MSA。对应下面depth中的2。图2 SW-MSA 流程1. cyclic shift +reverse cyclic shift图3 cyclic shift, shift_size = 7 // 2 = 3depth = [2, 2, 6, 2] # MSA的个数[SwinTransformerBlock(...,shift_size=0 if (i % 2 == 0) else window_size // 2,...)for i in rang......原创 2022-02-04 16:45:16 · 1877 阅读 · 0 评论 -
【神经网络架构】Swin Transformer
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows原创 2022-01-27 12:54:30 · 2578 阅读 · 0 评论