联邦学习用处:解决数据孤岛。英文:Federated machine learning/Federated Learning。
联邦学习可以有效解决数据孤岛问题,让参与方在不共享数据的基础上联合建模。
本质:联邦学习本质上是一种分布式机器学习技术,或机器学习框架。
目标:联邦学习的目标是在保证数据隐私安全及合法合规的基础上,实现共同建模,提升AI模型的效果。
前身:联邦学习最早在 2016 年由谷歌提出,原本用于解决安卓手机终端用户在本地更新模型的问题;
参考:
有空详细阅读下!
联邦学习用处:解决数据孤岛。英文:Federated machine learning/Federated Learning。
联邦学习可以有效解决数据孤岛问题,让参与方在不共享数据的基础上联合建模。
本质:联邦学习本质上是一种分布式机器学习技术,或机器学习框架。
目标:联邦学习的目标是在保证数据隐私安全及合法合规的基础上,实现共同建模,提升AI模型的效果。
前身:联邦学习最早在 2016 年由谷歌提出,原本用于解决安卓手机终端用户在本地更新模型的问题;
参考:
有空详细阅读下!