0. 换写作平台
csdn 广告太多(虽然可以加去广告插件解决),并且文章很容易就被不通知就被转载。写文章时候的公式被存为图片,页面不够简洁,写文章需要被审核。
准备把所有以后写的东西转移到 github 博客,并且可以加入自己的代码还是很适合我。
1. 学习XGBoost
2. 研究Transformer 架构以及优化变种
已完成部分:Transformers are RNNs (linear transformer)论文阅读_理心炼丹的博客-CSDN博客
待学习
https://github.com/hyunwoongko/transformer :主要是图不错
哪位大神讲解一下Transformer的Decoder的输入输出都是什么?能解释一下每个部分都是什么? - 知乎
【手撕Transformer】Transformer输入输出细节以及代码实现(pytorch)_顾道长生'的博客-CSDN博客_transformer输入输出
举个例子讲下transformer的输入输出细节及其他 - 知乎
3. 详细整理SVM知识
机器学习-白板推导系列(六)-支持向量机SVM(Support Vector Machine)_哔哩哔哩_bilibili
4. 人脸检测算法--Retinaface 源码阅读
路线:预训练模型转onnx,然后netron可视化,结合源码解读。
源码:
参考文档:retinaface - 人脸检测网络解析 - 知乎
GitHub - shouxieai/tensorRT_Pro: C++ library based on tensorrt integration
5. 反馈神经网络研究
主要是来系统上打通知识体系。由于学控制出身,想去研究前馈,反馈各种神经网络的区别。对知识体系进行分门别类。
神经网络算法详解 04:反馈神经网络(Hopfield、BAM、BM、RBM)_datamonday的博客-CSDN博客_反馈神经网络
从控制论到深度学习——神经网络的三次蜕变_神经网络_ZZKOOK
6. RNN、LSTM和Transformer 架构研究
主要研究它们三个怎么处理变长序列。以及对三者的深刻理解和认识。
感觉 Jordan network 就是自回归的解码器,Elman network 就是一般的RNN.
RNN两种网络类型(Jordan network和Elman network)区别_Ricky_Yan的博客-CSDN博客_jordan网络
Pytorch中的RNN及变种模型与变长序列的处理-小新xx
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
PyTorch nn.RNN 参数全解析_aelum的博客-CSDN博客
RNN — PyTorch 1.12 documentation
pytorch中如何处理RNN输入变长序列padding - 知乎
9. 现代循环神经网络 — 动手学深度学习 2.0.0-beta0 documentation
https://github.com/huggingface/transformers/blob/main/README_zh-hans.md
How to Develop LSTM Models for Time Series Forecasting
7. 日志异常检测
https://github.com/HelenGuohx/logbert
8. python多进程和多线程
python多进程和多线程看这一篇就够了_T型人小付的博客-CSDN博客_python多进程和多线程
9. 研究下别人写的东西
mcbal:试图解释Transformer
https://haomood.github.io/homepage/
10. C++ 面试
11. 本周末更新YOLOv6 和YOLOv7论文阅读
但是准备转移平台不在csdn更新。