近期学习和更新计划

0. 换写作平台

csdn 广告太多(虽然可以加去广告插件解决),并且文章很容易就被不通知就被转载。写文章时候的公式被存为图片,页面不够简洁,写文章需要被审核。

准备把所有以后写的东西转移到 github 博客,并且可以加入自己的代码还是很适合我。

1. 学习XGBoost

2. 研究Transformer 架构以及优化变种

已完成部分:Transformers are RNNs (linear transformer)论文阅读_理心炼丹的博客-CSDN博客

待学习 

https://github.com/hyunwoongko/transformer :主要是图不错

哪位大神讲解一下Transformer的Decoder的输入输出都是什么?能解释一下每个部分都是什么? - 知乎

【手撕Transformer】Transformer输入输出细节以及代码实现(pytorch)_顾道长生'的博客-CSDN博客_transformer输入输出

举个例子讲下transformer的输入输出细节及其他 - 知乎

3. 详细整理SVM知识

机器学习-白板推导系列(六)-支持向量机SVM(Support Vector Machine)_哔哩哔哩_bilibili

4. 人脸检测算法--Retinaface 源码阅读

路线:预训练模型转onnx,然后netron可视化,结合源码解读。

源码:

GitHub - biubug6/Pytorch_Retinaface: Retinaface get 80.99% in widerface hard val using mobilenet0.25.

参考文档:retinaface - 人脸检测网络解析 - 知乎

GitHub - shouxieai/tensorRT_Pro: C++ library based on tensorrt integration

5. 反馈神经网络研究

主要是来系统上打通知识体系。由于学控制出身,想去研究前馈,反馈各种神经网络的区别。对知识体系进行分门别类。

神经网络算法详解 04:反馈神经网络(Hopfield、BAM、BM、RBM)_datamonday的博客-CSDN博客_反馈神经网络

从控制论到深度学习——神经网络的三次蜕变_神经网络_ZZKOOK

带你了解人工智能的个人空间_哔哩哔哩_Bilibili

6. RNN、LSTM和Transformer 架构研究

主要研究它们三个怎么处理变长序列。以及对三者的深刻理解和认识。

感觉 Jordan network 就是自回归的解码器,Elman network 就是一般的RNN.

RNN两种网络类型(Jordan network和Elman network)区别_Ricky_Yan的博客-CSDN博客_jordan网络

Pytorch中的RNN及变种模型与变长序列的处理-小新xx

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

PyTorch nn.RNN 参数全解析_aelum的博客-CSDN博客

RNN — PyTorch 1.12 documentation

pytorch中如何处理RNN输入变长序列padding - 知乎

9. 现代循环神经网络 — 动手学深度学习 2.0.0-beta0 documentation

变长循环神经网络 [Pytorch] - 知乎

https://github.com/huggingface/transformers/blob/main/README_zh-hans.md

How to Develop LSTM Models for Time Series Forecasting

时间序列的LSTM预测 - 知乎

7. 日志异常检测

https://github.com/HelenGuohx/logbert

8. python多进程和多线程

python多进程和多线程看这一篇就够了_T型人小付的博客-CSDN博客_python多进程和多线程

9. 研究下别人写的东西

Tags - 李理的博客

https://colah.github.io/

mcbal:试图解释Transformer

牧码哟

https://haomood.github.io/homepage/ 

10. C++ 面试

C++面向对象的理解 - 知乎

干货|C++面向对象知识总结 - 知乎

C++常见面试题总结 - 知乎

20道必须掌握的C++面试题 - 知乎

【C++】C++常见面试题汇总_持续更新中... - 知乎

11. 本周末更新YOLOv6 和YOLOv7论文阅读

但是准备转移平台不在csdn更新。 

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理心炼丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值