端午节到了,甜咸粽子之争也快要拉开帷幕。
小五准备用Python爬取淘宝上的粽子数据并进行分析,看看有什么发现。
爬虫
爬取淘宝数据,本次采用的方法是:Selenium控制Chrome浏览器自动化操作。其实我们还可以利用Ajax接口来构造链接,但是非常繁琐(包含加密秘钥等),直接使用Selenium来模拟浏览器会省去很多事情;
之前的文章我们也用过相同的方法,比如:爬电脑、爬电脑、爬完电脑买不起
最常见的问题是chromedriver驱动与谷歌浏览器的版本不匹配,很容易就可以解决。接下来,我们就开始利用selenium抓取淘宝商品,并使用Xpath解析得到商品名、价格、付款人数、店铺名、发货地址信息,最后将数据保存在本地。
爬虫过程如下图:
from selenium import webdriver
# 搜索商品,获取商品页码
def search_product(key_word):
# 定位输入框
browser.find_element_by_id("q").send_keys(key_word)
# 定义点击按钮,并点击
browser.find_element_by_class_name('btn-search').click()
# 最大化窗口:为了方便我们扫码
browser.maximize_window()
# 等待15秒,给足时间我们扫码
time.sleep(15)
# 定位这个“页码”,获取“共100页这个文本”
page_info = browser.find_element_by_xpath('//div[@class="total"]').text
# 需要注意的是:findall()返回的是一个列表,虽然此时只有一个元素它也是一个列表。
page = re.findall("(\d+)",page_info)[0]
return page
详细爬虫代码下载见文末。
数据整理
此时我们爬取得到的数据:
数据还是比较粗糙的,有几个问题需要我们去处理:
添加列名
去除重复数据(翻页爬取过程中会有重复)
购买人数为空的记录,替换成
0人付款
将购买人数转换为销量(注意部分单位为
万
)删除无发货地址的商品,并提取其中的省份
部分代码:
# 删除无发货地址的商品,并提取省份
df = df[df['发货地址'].notna()]
df['省份'] = df['发货地址'].str.split(' ').apply(lambda x:x[0])
# 删除多余的列
df.drop(['付款人数', '发货地址', 'num', 'unit'], axis=1, inplace=True)
# 重置索引
df = df.reset_index(drop=True)
df.head(10)
这样我们就对数据完成了清洗与整理,方便下一步进行可视化。
顺便做个排序,看看什么粽子最贵!
df1 = df.sort_values(by="价格", axis=0, ascending=False)
df1.iloc[:5,:]
前三名都来自御茶膳房旗舰店,让我们看看1780元的粽子长啥样吧!
想尝尝
数据可视化
本文我们打算用pyecharts进行可视化展示。有同学可能使用的是老版本(0.5X),Pyecharts的1.x版本与老版本(0.5X)不兼容,如果无法导入可能是这个问题哈。
可视化所有语句均基于v1.7.1
,通过以下语句可查询你的pyecharts版本:
import pyecharts
print(pyecharts.__version__)
具体安装与使用案例可以参考教程:Pyecharts 1.x 教程。
扇形图
最贵的粽子1780元看来是吃不起了,那大家都买什么价位的呢?
先按照淘宝推荐的区间划分一下:
def price_range(x): #按照淘宝推荐划分价格区间
if x <= 22:
return '22元以下'
elif x <= 115:
return '22-115元'
elif x <= 633:
return '115-633元'
else:
return '633元以上'
再使用pyecharts
来生成不同价格区间的粽子销量占比图。
看来百元以内的粽子(礼盒装)才是大家的正常承受范围,不过我还是选择小区门口的5块钱3个。
词云图
我们用jieba
对爬取得到的商品名称分词,生成词云。
from pyecharts.charts import WordCloud
from pyecharts.globals import SymbolType
# 词云图
word1 = WordCloud(init_opts=opts.InitOpts(width='1350px', height='750px'))
word1.add("", [*zip(key_words.words, key_words.num)],
word_size_range=[20, 200],
shape=SymbolType.DIAMOND)
word1.set_global_opts(title_opts=opts.TitleOpts('粽子商品名称词云图'),
toolbox_opts=opts.ToolboxOpts())
word1.render("粽子商品名称词云图.html")
硕大的粽子
周围环绕着几个突出的关键词:礼盒装
、鲜肉
、蛋黄
、嘉兴
、豆沙
、端午节
。除去端午节相关的词汇,我们通过关键词大小似乎就知道几种口味的受欢迎情况。
查阅资料对比一下,还真是大体一致。
心疼我枣粽。
至于嘉兴这个地名,我们后文会继续提到。
条形图
上文我们查到了最贵的粽子,那么销量最好的粽子/店铺是什么呢?
安排
五芳斋
共4款入围,其中一款礼盒装达到了100万+的销量,应该比这个还多(参见微信的10w+)。真真老老
紧随其后,3款粽子进入TOP10。其余的品牌还有稻香村
和知味观
,额,第九名是卖粽叶的,看来自己包粽子的需求也是蛮大的嘛。
粽子店铺销量Top10其实与商品相似,五芳斋官方旗舰店
和真真老老旗舰店
占据首位,遥遥领先。
经过查阅,五芳斋,真真老老,都为嘉兴的粽子两大品牌,那难怪嘉兴
在词云图里那么突出。嘉兴属于浙江省
,销量冠亚军都在这里,那浙江岂不是占比很大。
还真是这样:
地图
继续使用pyecharts
来生成各省份粽子销量分布图
from pyecharts.charts import Map
# 计算销量
province_num = df.groupby('省份')['销量'].sum().sort_values(ascending=False)
# 绘制地图
map1 = Map(init_opts=opts.InitOpts(width='1350px', height='750px'))
map1.add("", [list(z) for z in zip(province_num.index.tolist(), province_num.values.tolist())],
maptype='china'
)
map1.set_global_opts(title_opts=opts.TitleOpts(title='各省份粽子销量分布'),
visualmap_opts=opts.VisualMapOpts(max_=300000),
toolbox_opts=opts.ToolboxOpts()
)
map1.render("各省份粽子销量分布.html")
浙江嘉兴的销量占比最大。怪不得说中国粽子看浙江,浙江粽子看嘉兴(通过计算发货地址为浙江的粽子销量占比70.6%,而嘉兴占浙江的87.4%)
小结
粽子自古以来就代表着纪念和美好的祝愿。
而在这个并不安稳的2020,端午的粽子更多了一些祈愿国泰民安,顺利度过阴霾的意义。
“端午安康”不再是一句客套话,而是我们能送给彼此的最好的愿景。
本文数据和爬虫可视化源码下载地址:
https://alltodata.cowtransfer.com/s/d11c8906cd9c4c
推荐阅读
01
PART ONE
《精通Python网络爬虫:核心技术、框架与项目实战》
韦玮 著
推荐语:资深专家,以实战为导向,讲透Python网络爬虫各项核心技术和主流框架,深度讲解网络爬虫的抓取技术与反爬攻关技巧
02
PART ONE
《Python数据整理》
【美】 提尔塔吉奥蒂·萨卡(Tirthajyoti Sarkar) 著
马羚,姚成柱,吕晓峰 等 译
推荐语:这是一本实用的Python数据整理入门教程。书中全面、系统地阐释数据整理和提炼过程背后的所有核心思想,通过大量的练习和实例,帮助你全方位理解并掌握相关概念、工具和技术。
03
PART ONE
《Python数据可视化:基于Bokeh的可视化绘图》
屈希峰 著
推荐语:从图形绘制、数据动态展示、Web交互等维度全面讲解Bokeh功能和使用,不含复杂数据处理和算法,深入浅出,适合零基础入门,包含大量案例。
福利时间
端午节来了,机械工业出版社华章计算机联合华章财经、华章心理等其他8个公众号总共赠出40本书(每个公众号5本)。
具体参与规则请见今天第二条推文 —→ 端午重磅福利:40本好书等你认领
更多精彩回顾
书讯 | 6月书讯 (上)| 初夏已至,书香有约,六月宜静心读书
书讯 | 6月书讯 (下)| 初夏已至,书香有约,六月宜静心读书
上新 | 周志华领衔撰写,历时4年,宝箱书问世!
书单 | 创建字节跳动之前,张一鸣读过哪些硬核技术书?
干货 | G1垃圾回收算法概述