python虚拟环境及jupyter notebook等依赖包安装

Python版本3.7.9

安装virtualenv依赖

pip install virtualenv

安装成功:

安装虚拟环境

在非中文路径目录下打开cmd

若是中文路径,路径会出现乱码

创建环境venv (venv为环境名称,可以自己指定)
virtualenv venv  # 创建venv环境, 并把系统python 的文件拷贝到venv目录下

创建成功:

可以见到在D:\02-coder\07_pythonCode\python_env目录下成功创建了venv文件,并拷贝了相关python文件:

### 如何在 Python 环境安装 Jupyter Notebook 为了确保 Jupyter Notebook 能够正常工作并避免与其他第三方库发生冲突,建议将其安装在一个独立的 Python 虚拟环境中。以下是关于如何在不同类型的 Python 环境安装 Jupyter Notebook 的具体说明。 #### 使用 Conda 创建虚拟环境安装 Jupyter Notebook Conda 是一种流行的包管理器和环境管理系统,特别适合用于科学计算领域。通过 Conda 可以轻松创建一个新的虚拟环境并将 Jupyter 安装其中。 ```bash conda create -n myenv python=3.9 conda activate myenv conda install jupyter ``` 上述命令会创建一个名为 `myenv` 的新环境,并激活该环境安装 Jupyter Notebook[^1]。 #### 使用 Pip 在虚拟环境安装 Jupyter Notebook 如果更倾向于使用标准的 Python 工具链,则可以通过 `pip` 来完成相同的目标。首先需要创建一个虚拟环境(例如使用 venv),然后在其内部安装所需的软件包。 ```bash python -m venv myenv source myenv/bin/activate # Windows 用户应改为 `myenv\Scripts\activate` pip install jupyter ``` 此过程同样能够有效隔离项目依赖关系,从而减少潜在冲突的发生几率[^5]。 #### 解决常见错误提示的方法 即便遵循以上指导操作,在某些情况下仍可能出现安装失败的现象。这往往是因为存在未满足的前提条件或者配置不当所致。针对这种情况可采取如下措施: - **验证基础架构状态**:确认所使用的 Python 版本是否支持最新版 Jupyter;同时也要留意操作系统本身的兼容性情况[^3]。 - **更新工具集至最新稳定版本**:有时旧版本的 pip 或 setuptools 可能无法正确解析较新的元数据格式文件。执行升级可以帮助缓解此类难题: ```bash pip install --upgrade pip setuptools wheel ``` - **手动指定镜像源地址加速下载速度**:对于国内开发者而言,连接国外官方仓库时常面临延迟过高甚至断开的问题。此时推荐利用清华 TUNA 镜像服务作为替代方案之一: ```bash pip install jupyter -i https://pypi.tuna.tsinghua.edu.cn/simple ``` 一旦顺利完成设置之后,就可以启动应用程序来检验成果了。最简便的方式是从终端界面直接调用对应入口脚本来触发图形化用户界面显示出来[^2]: ```bash jupyter notebook ``` 另外值得注意的是,为了让多个不同的解释器实例都能被识别到并且正常使用各自的扩展功能模块,还需要额外做一些准备工作——即将目标路径添加进入 kernelspec 列表里去[^4]: ```bash python -m ipykernel install --user --name=my_custom_env_name --display-name="Python (My Custom Env)" ``` 这样以后无论何时切换当前活动区域指向哪个特定 runtime context 下面都会显得更加直观便捷许多!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值