【开源数据集】无人机道路破损检测数据集UAV-PDD2023

1. 数据集简介

最近在调研一些交通基建方面的算法,发现了挺多相关的实用数据集,都是近些时间开源的,打算一一整理出来,今天这期就是通过无人机巡查拍摄的道路路面图像,其中记录了6类常见的路面破损。该数据集由河北工业大学开源,发表在Data in Brief期刊中。有意思的是,这个期刊并非传统意义上以研究问题为导向的期刊,而是以数据共享为导向的期刊。

传统的路面破损识别,通常是在特定的检测车上进行,而无人机的应用则提供了一个更为新颖的视角,尤其是近几年高像素工业相机的价格逐渐下降,低价高效的巡查设备是一个可能的迭代方向。

2. 数据集规格

UAV-PDD2023数据集共包含2440张三通道JPG格式图像,以及对应的VOC格式标注文件,同时为了增强实用性,作者特意在下雨过后1小时拍摄了部分路段的照片。数据集中,图像规格为2592×1944,来自于一个4K的相机拍摄的大尺寸图像切分得到,单个位置共有4张图像。图像中分别标记了六种类型的道路损坏,分别为:

1. Longitudinal cracks,纵向裂缝,LC

2. Transverse cracks,横向裂缝,TC

3. Alligator cracks,鳄鱼裂缝,AC

4. Oblique cracks,斜裂缝,OC

5. Repair,修复,RP

6. Potholes,坑洼,PH

3. 数据集下载

【下载地址】

【开源数据集】无人机道路破损检测数据集UAV-PDD2023

关于数据集的任何问题,均可以在评论区或后台私信留言,我看到会第一时间回复。欢迎关注!

同时,您也可以在VX公众号:石小坚,获取更多数据集!

整理不易,多多关注啦~

### 无人机拍摄的道路损伤检测数据集 对于道路损伤检测,采用无人机(UAV)拍摄图像的方法已经得到了广泛的研究和发展。特别是随着高像素工业相机价格的降低,使得利用无人机进行高效低成本的道路巡查成为现实[^2]。 #### UAV-PDD2023 数据集介绍 一个值得关注的数据集是 **UAV-PDD2023** ,这是一个专门针对无人机道路破损检测设计的开源数据集。该数据集包含了大量由无人机采集到的不同环境下的道路表面图片,涵盖了多种类型的裂缝和其他形式的损害情况。这些图像经过精心标注,可以用来训练机器学习模型来自动识别并分类不同的损坏模式。 此数据集不仅提供了丰富的视觉素材供研究人员测试算法性能,同时也促进了这一领域内不同团队之间的交流和技术进步。通过使用这样的高质量数据资源,能够加速开发更加精确可靠的自动化道路状况评估工具。 ```python import os from PIL import Image import matplotlib.pyplot as plt # 假设我们有一个本地路径指向 UAV-PDD2023 的文件夹结构 dataset_path = './path_to_UAV_PDD_2023' def display_sample_images(dataset_dir, num_samples=5): """展示来自指定目录下随机选取的一些样本图像""" images_list = [] labels_list = [] # 随机读取若干张图片及其标签 for root, dirs, files in os.walk(dataset_dir): if 'images' not in root or 'labels' not in root: continue image_files = [f for f in files if '.jpg' in f.lower()] selected_indices = np.random.choice(len(image_files), size=num_samples, replace=False) for idx in selected_indices: img_file = image_files[idx] with open(os.path.join(root.replace('labels', 'images'), img_file)) as im_f: img = Image.open(im_f).convert("RGB") label_file = img_file.split('.')[0]+'.txt' lbl = None try: with open(os.path.join(root, label_file)) as lb_f: lines = lb_f.readlines() lbl = int(lines[0].strip()) # 这里假设每行只有一个整数作为类别ID except Exception as e: print(f"Error reading {label_file}: ", str(e)) finally: images_list.append(img) labels_list.append(lbl) fig, axes = plt.subplots(1, len(images_list), figsize=(18, 4)) for ax, (img, lbl) in zip(axes.flatten(), zip(images_list, labels_list)): ax.imshow(np.array(img)) title_text = "Label: {}".format(str(lbl)) if lbl is not None else "" ax.set_title(title_text) ax.axis('off') display_sample_images(dataset_path) plt.show() ```
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值