【开源数据集】高分辨率SAR飞机检测识别数据集

数据集简介

本期数据集专业性比较强,是由空天院与中国科学院大学相关团队开源的高分辨率飞机检测数据集,数据集图像由SAR(合成孔径雷达)生成,相对于传统的卫星图像,SAR的优点在于不受光照、云雾和气候等条件限制,在遥感领域应用还是比较广泛的,当然缺点也是比较明显,那就是图像特征比较粗糙。不过近些年类似的微波成像系统分辨率不断提高,也为精细化检测提供了可能。

图片

SAR相关的目标检测识别数据集在网上开源的有很多,其他类似的还有以舰船、桥梁、油罐等目标为主的各类SAR成像数据集,均在深度学习发展的这几年逐渐发表,也都是领域内的一个研究方向。

数据集规格

SAR-AIRcraft-1.0数据集中所有图像采集自高分三号卫星,极化方式为单极化,空间分辨率为1m,成像模式为聚束式。综合考虑机场规模和停放飞机的数量,数据集主要选用上海虹桥机场、北京首都机场、台湾桃园机场3个民用机场的影像数据,包含800x800,1000x1000,1200x1200和1500x1500共4种不同尺寸,共有4368张图片和16463个飞机目标实例。飞机的具体类别包含了A220, A320/321, A330, ARJ21, Boeing737, Boeing787, other,各个类别的实例以及数量如图2和图3所示,其中other表示不属于其余6个类别的飞机实例。

图片

在实例的标注方面,SAR-AIRcraft-1.0数据集中所有实例目标均使用水平矩形框进行标注,标注中提供了相应图像的长宽尺寸、标注目标的类别以及标注矩形框的位置。

图片

资源下载

注意:SAR-AIRcraft-1.0的数据标注文件存放在目录下的Annotations文件夹,标注为xml格式但不包含头信息和对应的图像路径等字段,可能会在labelimg中打不开或看不到标注框。

小编提供了一个简单的python转换脚本,可以将数据集的标注直接转换为标准格式,从而直接在labelimg等工具中打开查看标签,脚本与数据放在同一目录下,需要的可以自行使用。

图片

【参考文章】

王智睿, 康玉卓, 曾璇, 等. SAR-AIRcraft-1.0:高分辨率SAR飞机检测识别数据集[J]. 雷达学报, 2023, 12(4): 906–922. doi:  10.12000/JR23043

【数据集下载】

【开源数据集】高分辨率SAR飞机检测识别数据集

关于数据集的任何问题,均可以在评论区或后台私信留言,我看到会第一时间回复。整理不易,求个关注~拜托啦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值