【开源数据集】电动车佩戴头盔检测数据集(TWHD)

1、数据集简介

随着国家惩治行车不戴头盔违法行为的力度不断加大,双轮车(电动车与摩托车)头盔检测任务也越来越重要。双轮车佩戴头盔检测数据集(two wheeler helmet dataset,TWHD)收集了来自开源数据OSF dataset、bike helmet dataset的数据进行重新标注,并添加了网络爬虫所收集到的图像,按照双轮车与驾乘人员整体、未戴头盔的人头、戴头盔的人头进行定位与分类标注。主要包括:

  • 图像与标注数量各5448张
  • OSF dataset随机抽取4710张并重新标注
  • bike helmet dataset与网络图像738张

2、数据集内容

数据集已经按照VOC格式进行整理,可以直接通过labelImg读取打开查看相关的标注信息。图像分辨率不一,总体在1080P以下,不区分训练集和测试集,总计5448张图像样本与标注xml文件。数据集标注共三个类别:

  • two_wheeler,二轮车主体,黄色
  • helmet,佩戴头盔的头部,绿色
  • without_helmet,未戴头盔的头部,红色

### 使用YOLO算法在无人机上实现两轮车头盔检测 #### 应用背景 随着城市交通管理需求的增长,利用无人机进行道路交通监控变得越来越重要。特别是对于摩托车和电动车驾驶员佩戴安全头盔情况的监测,可以有效提高道路安全性并减少交通事故的发生率。 #### 技术方案概述 为了实现在空中通过无人机摄像头捕捉到的画面中识别骑乘人员是否按规定戴好头盔的目标,采用基于深度学习的对象检测框架——YOLO(You Only Look Once),尤其是最新版Ultralytics YOLOv8[^2],因其具备高效实时处理能力而被广泛应用于此类场景之中。 #### 关键技术要点 - **数据集准备** 构建专门针对中国国情下的两轮车辆及其驾乘者特征的数据集合非常重要。该数据集中应包含不同光照条件、天气状况下拍摄的各种角度图片资料,并标注出每张照片里存在的目标对象位置信息以及类别标签(即“带帽子的人”或“没带头盔的人”)。这一步骤决定了后续训练效果的好坏程度。 - **模型定制化调整** 鉴于实际应用场景可能涉及复杂多变的因素影响,如遮挡物干扰、视角变化等,在原有预训练权重基础上做适当微调能够显著改善最终预测精度。具体操作包括但不限于修改网络结构参数配置文件内的超参设定;增加额外层来增强特定属性的学习能力;或是引入迁移学习机制充分利用已有的大规模通用物体识别成果作为初始化起点加快收敛速度同时保持较高泛化水平。 - **部署优化措施** 考虑到机载计算资源有限这一现实约束条件下如何保障推理过程流畅稳定运行至关重要。一方面可以通过量化方法降低浮点运算量从而节省功耗延长续航时间另一方面借助边缘侧加速硬件比如GPU/FPGA/DSP单元分担部分任务减轻主控芯片负担进而达成整体性能最优化目的。 ```python import torch from ultralytics import YOLO # 加载预训练模型 model = YOLO('yolov8n.pt') # 设置设备为CUDA GPU如果可用的话 device = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(device) def detect_helmet(image_path): results = model.predict(source=image_path, conf=0.5) for result in results: boxes = result.boxes.cpu().numpy() for box in boxes: r = box.xyxy[0].astype(int) # 假设我们已经定义好了类别的索引映射关系 class_id = int(box.cls[0]) confidence = float(box.conf[0]) print(f'Detected object at {r} with confidence {confidence:.2f}') ``` 此段Python代码展示了怎样加载一个预先训练好的YOLO v8 nano版本模型并对单幅输入图像执行推断流程获取所有满足置信度阈值以上的目标边界框坐标及对应分类得分。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值