SAP UI5 应用里如何判断用户设备类型?听听 SAP Joule 的回答

笔者的 SAP UI5 开发教程有一篇文章,介绍了 SAP UI5 应用基于设备类型进行页面适配的工作原理,即 SAP UI5 的 Device Adaptation 特性是如何工作的。

有朋友在评论区留言:

汪老师,请问如何在 SAP UI5 代码里,判断当前用户是用手机还是平板访问的应用呢?

其实就和笔者之前的文章「Excel 直接调用 ABAP RFC 的工作原理介绍
」一样,这个问题完全可以让 AI 回答。

按照笔者之前的文章「使用 SAP 自家的 AI 工具 Joule 辅助 SAP Fiori 应用开发」介绍的步骤,在 SAP Business Application Studio 里配置好 SAP Joule,向其提问:

ui5 检测用户访问应用的设备类型的源代码在哪个文件的哪个方法里?

SAP Joule 并没有直接回答我这个问题,而是告诉我,如果想在自己的工程里检测用户设备类型,可以使用 「sap.ui.Device」这个 API.

<think>好的,我现在需要回答用户的问题:如何在SAP应用深度学习技术,或者深度学习与SAP集成的最佳实践。首先,我需要回顾用户提供的引用内容,看看有没有相关的信息可以引用。 引用[1]提到了SAP二次开发中的数据安全和权限管理,以及云平台集成实践,这可能涉及到SAP BTP(业务技术平台)。引用[2]讨论的是SAP AI的应用场景,特别是用户想用AI工具来处理IT支持工作。引用[3]则提到深度学习在制造业供应链销量预测的应用,使用的机器学习方法包括Xgboost、GBDT等,但用户现在关心的是深度学习与SAP的集成。 接下来,我需要结合这些引用,构建一个合理的回答。首先,SAP BTP作为云平台,可能提供AI服务,包括深度学习模型部署。引用[2]中的会议讨论可能涉及到使用SAP AI工具,比如Joule或AI Core,来集成AI功能。引用[3]提到的供应链预测可以作为一个应用场景,说明如何在SAP系统中应用深度学习模型进行预测分析。 然后,我需要确保回答结构清晰,分步骤或分模块说明方法。可能需要包括以下几个部分:SAP BTP的AI服务、ABAP中的集成、与第三方平台的接口、预置解决方案如SAP Analytics Cloud,以及数据治理的重要性。 同时,需要生成相关问题,这些问题应该围绕集成方法、数据对接、场景案例、安全性和工具比较等方面展开。 还要注意使用正确的中文表达,避免技术术语错误,并正确应用引用标注。例如,在提到云平台集成时引用[1],在SAP AI工具时引用[2],在供应链预测时引用[3]。 最后,检查是否符合用户给出的格式要求,包括使用$...$和$$...$$的数学表达式(如果有的话),但当前问题可能不涉及数学公式,所以可能不需要。不过如果有提到模型训练中的损失函数,可以用LaTeX表达,例如损失函数$L = \frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$。 总结回答的结构: 1. SAP BTP的AI服务集成 2. ABAP程序调用深度学习模型 3. 第三方平台接口(Python APIs) 4. 预置解决方案(SAP Analytics Cloud) 5. 数据治理与安全性 相关问题部分需要生成四个左右的问题,覆盖方法、场景、安全性和工具比较。 现在将这些路整理成正式的回答,确保每个引用在适当的位置标注,例如云平台集成引用[1],AI应用场景引用[2],供应链预测引用[3]。</think>### 在SAP应用深度学习技术的实践方法 #### 1. **基于SAP BTP的AI服务集成** SAP业务技术平台(BTP)提供AI Core和AI Launchpad服务,支持深度学习模型的全生命周期管理。开发人员可通过以下步骤实现集成: - 使用TensorFlow或PyTorch训练模型,并封装为Docker容器; - 通过SAP AI Core的API部署模型,并与SAP系统(如S/4HANA)对接; - 在ABAP程序中调用RESTful API触发预测任务,例如供应链需求预测[^1][^3]。 #### 2. **ABAP程序与深度学习模型交互** 在ABAP中可通过以下方式调用模型: ```abap DATA(lv_prediction) = cl_http_client=>create_by_url( 'https://ai-service/predict' )->send_receive( json_input )->get_cdata( ). ``` 结合制造业场景,可将历史销售数据通过IDoc接口传输至训练平台,模型返回预测结果后写入MM模块的需求计划表。 #### 3. **第三方平台接口开发** 通过SAP Cloud Connector建立与Python机器学习平台的连接: - 使用`RFC_READ_TABLE`读取ERP中的生产数据; - 调用Python API(如Flask服务)执行实时推理; - 将返回的预测结果(如设备故障概率)写入PM模块工单优先级字段。 #### 4. **预置解决方案应用** SAP Analytics Cloud(SAC)已集成时间序列预测功能,支持以下深度学习应用: $$y_t = f(y_{t-1}, y_{t-2}, ..., x_1, x_2) + \epsilon_t$$ 其中$f(\cdot)$可通过LSTM网络实现,直接作用于SAP数据仓库(BW/4HANA)中的时序数据[^1]。 #### 5. **数据治理与模型安全** 需在以下环节强化控制: - 训练数据脱敏:使用ABAP程序动态屏蔽敏感字段; - 模型访问权限:通过PFCG角色控制AI服务的调用权限; - 审计追踪:在GRC模块记录所有预测操作的日志。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汪子熙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值