ChatGPT O3 模型的使用次数限制

概要

ChatGPT Plus 用户在网页版使用 o3 模型时,每 7 天为一个使用周期,可每周发送上限 100 条消息,相当于每月约 400 条。 (OpenAI Help Center, Reddit)

使用限制详情

每周配额

ChatGPT Plus 用户可在模型选择器中选择 o3 模型,并获得每周 100 条消息的使用配额 (OpenAI Help Center)。第三方报道同样强调了这一新限制——TechRadar 指出 Plus 用户现在可获取 100 条/周 的 o3 访问权限 (TechRadar),而 Tenorshare AI Tips 也在使用限制指南中说明了 o3 模型对 Plus、Team 以及 Enterprise 用户的每周 100 条限制 (Tenorshare AI)。
此外,Reddit 社区多名用户反馈说他们的 o3 使用限制已从过去的 50 条/周提升至 100 条/周——最初有报道称 Plus 订阅在首次发布时仅有 50 条/周 的限制 (BleepingComputer),但社区最新分享显示该限制已升级 (Reddit)。

重置机制

使用限制在每周重置一次,重置时间为首次发送消息后每 7 天的 00:00 (UTC)时刻。用户可在模型选择器下拉菜单中悬停在 o3 模型名称上,查看下一次重置的具体日期 (OpenAI Help Center)。这一方案确保用户在固定的周期内享有一致的使用体验。

月度估算

由于每周 100 条的限制,按照一个月大致 4 周的计算,ChatGPT Plus 用户每月可使用 o3 模型的消息调用约为 400 条 (OpenAI Help Center)。在实际使用中,视按照月份天数的差异,该数字可能略有增减。

与其它订阅计划的对比

  • ChatGPT Pro 计划提供几乎无限的 o3、o4-mini 及 4o 访问权限,且不需遵守每周消息上限 (OpenAI Help Center)。

  • Enterprise & Edu 账户与 Plus 相同,也享有 o3 每周 100 条的使用限制 (OpenAI Help Center)。

  • o4-mini / o4-mini-high 模型在 Plus 用户中分别限制为 300 条/天和 100 条/天 (OpenAI Help Center)。

历史变更快照

OpenAI 在近期将 o3 及 o4-mini 的使用限制对 Plus、Team 与 Enterprise 用户翻倍—— o3 从 50 条/周上调至 100 条/周, o4-mini 从 150 条/天上调至 300 条/天 (TechRadar)。Threads 上也有用户指出该限制“翻倍”改动,进一步印证了这一更新 (Threads)。

注意事项

  • 免费用户暂不支持使用 o3 模型,只有 Plus 及以上级别订阅用户才可使用 (Tenorshare AI)。

  • 消息计数仅包括成功调用 o3 模型的消息,重试或错误并不计入限制。

  • 如果超出限制, o3 选项会在模型下拉列表中灰显,直至下一次重置周再次恢复可选 (OpenAI Help Center)。

以上信息基于 OpenAI 官方帮助文档及多方社区报道汇总,为 ChatGPT Plus 用户在网页版使用 o3 模型时的关键限制。请根据自身使用需求,合理安排每周与每月的调用量。

### 使用 `optimum.onnxruntime` 导出机器学习模型 为了使用 `optimum.onnxruntime` 将 PyTorch 或 Hugging Face 的 Transformer 模型导出为 ONNX 格式,可以遵循以下过程: #### 准备环境 确保安装了必要的库,包括 `transformers`, `optimum`, 和 `onnxruntime-gpu`。可以通过 pip 安装这些依赖项。 ```bash pip install transformers optimum onnxruntime-gpu ``` #### 创建并配置 Optimum 推理管道 对于特定的任务和模型,创建相应的推理管道实例。这里以序列分类为例说明如何操作: ```python from optimum.onnxruntime import ORTModelForSequenceClassification # 加载预训练模型并转换成 ONNX 格式的模型 model = ORTModelForSequenceClassification.from_pretrained( "distilbert-base-uncased-finetuned-sst-2-english", from_transformers=True ) ``` 这段代码展示了怎样利用 `ORTModelForSequenceClassification` 类来加载一个已经经过微调用于情感分析任务的 DistilBERT 模型,并将其转化为 ONNX 格式[^2]。 #### 执行导出流程 接着定义导出的具体参数,比如优化级别 (`O3`) 可以用来减少最终 ONNX 文件大小的同时保持性能不变;还可以设置目标路径存储生成的 ONNX 文件。 ```bash (venv-meta) tarun@Taruns-MacBook-Pro ML % optimum-cli export onnx \ --model t5-small \ --optimize O3 \ t5_small_onnx ``` 上述命令行指令演示了如何通过 CLI 工具将 T5 小型版本模型导出至名为 `t5_small_onnx` 的目录下,并应用最高级别的优化选项[^3]。 #### 配置硬件加速器支持 如果希望在 AMD GPU 上运行该模型,则可以在初始化时指定执行提供者为 `"ROCMExecutionProvider"` 来启用 ROCm 支持。 ```python import torch from optimum.onnxruntime import ORTInferenceSession session_options = ort.SessionOptions() ort_session = ORTInferenceSession( 'path_to_your_model.onnx', providers=["ROCMExecutionProvider"], session_options=session_options, ) input_ids = ... # 输入张量准备 outputs = ort_session.run(None, {"input_ids": input_ids})[0] print(outputs) ``` 此部分代码片段显示了当有可用的 AMD 显卡时,应该如何调整会话配置以便充分利用 GPU 资源进行高效推理[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汪子熙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值