基于DeepSeek的本地化知识库 RAGFlow 搭建(附带镜像链接)

DeepSeek部署完后,除了正常的聊天使用,实际上更想基于它做一些更符合预期的事情,比如基于某些事实或者数据,能给我推理出来相关的结果或者尽量限制在某一部分进行回答,这个比较突出的表现方式就是知识库,其中,最新最新出来的开源 RAGFlow 很不错,这就部署出来瞅一下。

当然,DeepSeek的部署就需要参考《基于Ubuntu Ollama 部署 DeepSeek-R132B 聊天大模型(附带流式接口调用示例)》这篇文章了。

RAGFlow

简单介绍下它,RAGFlow 是一款基于深度文档理解构建的开源 RAG (Retrieval-Augmented Generation )引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。

这个项目地址:

https://github.com/infiniflow/ragflow

开源可商用,感觉还不错,就来试着搭建一下。
也可以直接试用一下

https://demo.ragflow.io 试用 demo。

搭建 RPAFlow

这个图是它的架构

前提条件

  1. CPU >= 4 核
  2. RAM >= 16 GB
  3. Disk >= 50 GB
  4. Docker >= 24.0.0 & Docker Compose >= v2.26.1

这个部署主要是Docker 部署,还有 Docker Compose.

执行DockerCompose命令下载Docker镜像

修改相关配置,主要是解决端口冲突和文件大小的限制


主要看这几个docker 相关的文件

  1. .env是基础环境文件,改了里面的端口要跟2 service_conf.yaml 里面的保持一致。
  2. 3 和 4 都是配置,主要是怕端口冲突,其中3 里面是核心服务80端口。

.env修改

默认是 ragflow:v0.16.0-slim 这个是缩减版

RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0-slim

这个是全量版,比较大,十几G

RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0

我这边默认是 最大的,里面包含了很多内置模型和ocr识别之类的。

docker/nginx/nginx.conf

 client_max_body_size 500M; //128M还是小

docker/docker-compose.yml 文件

services:
  ragflow:
    depends_on:
      mysql:
        condition: service_healthy
    image: infiniflow/ragflow:v0.16.0
    container_name: ragflow-server
    ports:
      - ${SVR_HTTP_PORT}:9380
      - 180:80
      - 443:443
    volumes:
      - ./ragflow-logs:/ragflow/logs
      - ./nginx/ragflow.conf:/etc/nginx/conf.d/ragflow.conf
      - ./nginx/proxy.conf:/etc/nginx/proxy.conf
      - ./nginx/nginx.conf:/etc/nginx/nginx.conf
    env_file: .env
    environment:
      - TZ=${TIMEZONE}
      - HF_ENDPOINT=${HF_ENDPOINT}
      - MACOS=${MACOS}
      - MAX_FILE_NUM_PER_USER=10485760
      - MAX_CONTENT_LENGTH=524288000

主要修改了 180:80 防止外部端口污染。

MAX_FILE_NUM_PER_USER 以及 MAX_CONTENT_LENGTH环境变量,主要用来解决 上传文档大小的问题。

增加hosts配置

修改 /etc/hosts 新增以下配置

127.0.0.1       es01 infinity mysql minio redis

启动命令

在 docker/ docker-compose.yml 目录执行以下命令

docker-compose -f docker-compose.yml up -d

这样就启动成功了

查看 ragflow-server 查看下具体的日志状态

docker logs -f ragflow-server

能看到 success 和 9380端口说明就成功了

然后,打开相关地址,换成本地IP即可(127.0.0.1:80)
80或者180 看《docker/docker-compose.yml 文件相关配置》

http://192.168.0.120:180


打开后,直接注册个账号(Sign Up)即可

登录后,就看到了知识库的主页

知识库相关操作

先增加模型,然后,上传文件


点击头像,然后,选择模型供应商

我们直接选择Ollama 即可


主要是两个模型,一个是chat模型,也就是我们的DeepSeek模型,另外embedding模型就是对文本内容取向量的模型,这个模型可以用它自己的也可以自己部署,我这边用自己部署的Ollma模型。

embedding 模型

ollama run bge-m3

我这边的ollama地址是

http://192.168.0.120:11434/

所以,如下图所示


上面是chat模型配置必须


这个是embedding 模型配置(bge-m3),不必须(可以用它内置的千问模型)

这个是配置完后的全部内容

系统模型设置

点击 系统模型设置

如下图所示,默认的实际上也是可以用的,我这里改成强大的deepseek

看看下面,我就改这么多,不改其他的。

确定后,就可以看知识库的效果了

创建知识库


点击创建知识库

文档语言,权限,模型选择好即可。


点击新增文件


上传完之后,要点击解析,它才能分片到向量数据库里,这里目前按照它的架构是ES里。


它就会慢慢的解析。


成功后,就可以进行知识库问答了。

知识库问答


新建一个助理


这里面配置很多,主要你所需要用到的知识库


这个界面是各种细节配置

这个就是模型的细节,可以参考模型的建议来,也可以自己微调。

试了一下,还是能用的。

完结,撒花!!!

包下载不下来的解决方案

我这边会提供百度云链接地址《相关文档》,可以直接使用。也可以自己敲命令一个一个下载,然后load到具体的服务器上。

docker pull docker.elastic.co/elasticsearch/elasticsearch:8.11.3
docker pull mysql:8.0.39
docker pull quay.io/minio/minio:RELEASE.2023-12-20T01-00-02Z
docker pull valkey/valkey:8
docker pull infiniflow/ragflow:v0.16.0


docker save -o elasticsearch.tar docker.elastic.co/elasticsearch/elasticsearch:8.11.3
docker save -o mysql.tar mysql:8.0.39
docker save -o minio.tar quay.io/minio/minio:RELEASE.2023-12-20T01-00-02Z
docker save -o valkey.tar valkey/valkey:8
docker save -o ragflow.tar infiniflow/ragflow:v0.16.0


docker load < elasticsearch.tar
docker load < mysql.tar
docker load < minio.tar
docker load < valkey.tar
docker load < ragflow.tar

总结

这个下载镜像基本都需要科学工具,设置不好,也不容易起作用,我这边就提供个下载地址。

相关文档

以官方文档为准

https://github.com/infiniflow/ragflow/blob/main/README_zh.md

百度云链接镜像文件和docker修改后的配置(仅供参考)

ragflow链接: https://pan.baidu.com/s/13YuKi31fbRAclzdpFCcQ3w?pwd=9kah
### DeepSeek Retrieval-Augmented Generation (RAG) 实现与使用 #### 技术概述 DeepSeek RAG 是一种融合检索增强生成模型的技术,旨在通过结合外部知识库提升大型语言模型的表现。该技术允许系统不仅依赖于内部参数,还能动态访问最新的、结构化的信息源,从而提供更精确的回答[^1]。 #### 架构设计 架构上,DeepSeek RAG 主要由两部分组成:检索模块和生成模块。检索模块负责从大规模文档集合中高效定位最相关的片段;而生成模块则基于这些片段以及上下文构建连贯且准确的回复。这种双阶段的设计使得即使面对未曾见过的新颖问题也能给出高质量解答[^3]。 #### 数据准备 为了训练有效的 RAG 模型,需要精心挑选并处理适合的任务特定的数据集。通常情况下会采用公开可用的大规模语料库作为基础资源,并对其进行必要的清理和转换操作以适配具体应用场景的需求。例如,在某些场景下可能还需要针对特定类型的查询做额外优化处理[^2]。 #### Python代码示例 下面是一个简单的Python脚本用于展示如何调用预训练好的DeepSeek RAG模型: ```python from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration # 初始化分词器、检索器和序列生成器 tokenizer = RagTokenizer.from_pretrained('facebook/rag-token-base') retriever = RagRetriever.from_pretrained('facebook/rag-token-base', index_name="exact", use_dummy_dataset=True) model = RagSequenceForGeneration.from_pretrained('facebook/rag-token-base') def generate_answer(question): input_ids = tokenizer.question_encoder(question, return_tensors='pt').input_ids retrieved_docs = retriever(input_ids)[0] generated_ids = model.generate(context_input_ids=retrieved_docs.context_input_ids, context_attention_mask=retrieved_docs.context_attention_mask) answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return answer question = "What is the capital of France?" print(f"The answer to '{question}' is {generate_answer(question)}") ``` 此段代码展示了如何加载预先训练过的Facebook提供的`rag-token-base`版本,并定义了一个函数`generate_answer()`来接收用户的提问并通过调用上述组件最终返回答案字符串。
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝创精英团队

你的支持是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值