【2025版】DeepSeek+ragflow构建企业知识库,从零基础到精通,精通收藏这篇就够了!

背景

之前写了一些知识库的文章,最后试用了dify,想着前端dify+企业自己的向量数据,随时可以切换前端应用,觉得很香。有些朋友向我案例ragflow。

试用完以后我发现,我想复杂了,定制企业向量数据库,ragflow完全能够满足,简单调整下,成本最低。功能实在是太强大了.

🌟 ragflow主要功能

🍭 “Quality in, quality out”

  • • 基于深度文档理解,能够从各类复杂格式的非结构化数据中提取真知灼见。

  • • 真正在无限上下文(token)的场景下快速完成大海捞针测试。

🍱 基于模板的文本切片

  • • 不仅仅是智能,更重要的是可控可解释。

  • • 多种文本模板可供选择

🌱 有理有据、最大程度降低幻觉(hallucination)

  • • 文本切片过程可视化,支持手动调整。

  • • 有理有据:答案提供关键引用的快照并支持追根溯源。

🍔 兼容各类异构数据源

  • • 支持丰富的文件类型,包括 Word 文档、PPT、excel 表格、txt 文件、图片、PDF、影印件、复印件、结构化数据、网页等。

🛀 全程无忧、自动化的 RAG 工作流

  • • 全面优化的 RAG 工作流可以支持从个人应用乃至超大型企业的各类生态系统。

  • • 大语言模型 LLM 以及向量模型均支持配置。

  • • 基于多路召回、融合重排序。

  • • 提供易用的 API,可以轻松集成到各类企业系统。

🔎 系统架构

安装

硬件要求

  • • CPU >= 4 核

  • • RAM >= 16 GB

  • • Disk >= 50 GB

  • • Docker >= 24.0.0 & Docker Compose >= v2.26.1

软件要求:

vm.max_map_count 不小于 262144,这个是针对linux

下载代码

git clone https://github.com/infiniflow/ragflow.git

我们看下docker目录中的文件,主要关注圈中的3块

  • .env 主要是docker部署的时候一些变量,service_conf.yaml.template是服务启动使用的配置文件,需要和.env文件里的配置对应,特别是端口

  • • 需要注意的是,在mac操作系统下,会引入2

|
镜像tag

|

镜像大小(GB)

|

是否有向量模型?

|

是否稳定版版?

|
| — | — | — | — |
|

v0.16.0

|

≈9

|

✔️

|

稳定

|
|

v0.16.0-slim

|

≈2

|

|

稳定

|
|

nightly

|

≈9

|

✔️

|

不稳定,每晚构建

|
|

nightly-slim

|

≈2

|

|

不稳定,每晚构建

|

关键参数

.env文件

#文档引擎,默认使用es   DOC_ENGINE=${DOC_ENGINE:-elasticsearch}      #docker部署的镜像,默认不带模型   RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0-slim      #redis端口,6379,我本机以及docker已经有了,我改程了6380   REDIS_PORT=6380      #服务端端口   SVR_HTTP_PORT=9380      #自定义了两个变量,nginx的暴露端口   EXPOSE_NGINX_PORT=8002   EXPOSE_NGINX_SSL_PORT=8444      #如果你需要在docker中拉取模型,网有不好,添加此镜像,将前面的#去掉   # HF_ENDPOINT=https://hf-mirror.com      #mac系统需要将此参数放开,默认禁用,将前面的#去掉就开启了   # MACOS=1

需要注意的是.env文件修改后,对应的service_conf.yaml.template配置中一些默认值也得改变。比如我们改了redis的端口,

`#将redis的端口由6379改成6380   redis:     db: 1     password: '${REDIS_PASSWORD:-infini_rag_flow}'     host: '${REDIS_HOST:-redis}:6380'` 

拉取镜像

# 拉取镜像   docker compose  pull

如果拉不到,网络不稳定,替换国内的镜像

` - 华为云镜像名:`swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow`   - 阿里云镜像名:`registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow` `

启动

我们通过-p指定分组名称,或者在docker-compose.yaml中添加name: 'ragflow'

docker compose up -d -p ragflow

等一会,安装过程只遇到了端口冲突的问题,修改下端口即可。

通过docker ps或docker desktop 软件查看启动状态。

登录

点击docker desktop或者http://localhost:8002/就进入了登录注册界面。

上来是没有账户的,我们先点击注册一个,然后登录。

基本设置

登录进来以后,我们先将右上角的1设置为简体中文,然后点击2

我们主要关注1模型供应商和3团队即可。可以通过2查看系统的资源概况,以及任务数。

点击1我们开始添加模型

模型配置

官方默认推荐通义,应该是合作了,我们添加本地ollama和刚充值的热乎的deepseek.

本地Ollama 模型配置

ragflow中,ollama的模型类型可以选择4个,其实也就比dify多了一个reran模型,

通过ollama listt查看模型列表,然后添加两个一个chat模型,一个embedding模型。

最大token我们通过ollama show deepseek-r1:32b获取后填入。然后保存。

报错了了,一看cudaMalloc failed: out of memory,一看内存81%了,空余12g的内存竟然不够用。赶紧关一些软件。

然后再保存。成功。然后点击添加向量模型。

添加DeepSeek

很简单,就填写一个api-key就行了。

系统模型配置

选择相应的模型即可。

团队

我点击右上角的邀请,填写用户邮箱,点击确定。提示用户不存在。

我猜测,应该是注册制,注册以后再邀请进团队。

然后角色是Invite,时间也有问题。应该是数据库的时区的问题。在.env中TIMEZONE配置的是shanghai时区。这个不太影响,下次再看下。

然后我就很好奇,另外一个用户里是什么?我登录了另外一个账户,原来邀请的用户还得同意。

同意以后,还可以退出。我再切换到原来的账户里,

发现角色变成了Normal

需要注意的是,团队共享了知识库,但是聊天助理并没有共享,模型也没有共享。

不过想想也对,创建的应用可以通过api分享,出来,共用的功能,设置都不需要邀请用户。知识反而是核心。我的理念和他好像。哈哈。

功能概述

从面板上看,就几个功能。还是很清晰,它的模板特别少,在创建agent的时候可以选择。

知识库

创建知识库

点击创建知识库,填写名称,点确定即可。

这个时间反而是准的。

知识库配置

配置

  • • 点击1的配置,

  • • 我们可以指定文档语言2

  • • 也可以设置这个知识库的权限3

  • • 可以自定义解析方法4,而且每个解析方法后面都有对应的示例说明。是不是用它内置的向量模型会更好一些?

解析方法类型

解析方法类型

分段标识符,支持多字符作为分隔符,这对复杂格式的文档,也太友好了。还能有布局识别和OCR功能。

知识上传(数据集)

ragflow中上传的在数据集模块里。

ragflow的知识库,只支持和上传文件或s3同步。同时可以一次上次多个知识。提示也很友好严禁上传公司数据或其他违禁文件

上传以后不会自动解析,需要手动点击。

可以通过1单个解析,也可以通过勾选多个,批量解析。

默认规则下,解析速度还行,清华大学第一弹一共104页,解析了110秒。

然后看了下分段效果。点开一看,太强大了图片内容也解析出来了。《清华大学第四弹》的内容。
我没有使用ocr呀,这个后续再研究。

还有表格的识别。

检索测试

随便问一下,这检索效果,真棒。而且返回速度特别快。

文件管理

上传的文件在文件管理里面。

聊天

创建聊天

  • • 点击新建助手

  • • 显示引文3

  • • 关键词分析4开启。应用 LLM 分析用户的问题,提取在相关性计算中要强调的关键词。

  • • 知识库可以选择多个5

提示引擎默认即可,不用动。

在模型设置里,主要是最大token数,默认512太小了,最大设置为8192

使用

  • • 我们选择小助手1,点击2

  • • 直接在3输入问题,同时也可以再上传任何文件。

    回答效果,有些图片里的内容都找到并填了进去。

    AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

四、AI大模型商业化落地方案

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值