使用 DeepSeek 和 RAGFlow 搭建垂直领域大模型是一个复杂但非常有潜力的任务。
垂直领域大模型是针对特定行业或领域进行优化和定制的大型语言模型。与通用大模型(如GPT-4)不同,垂直领域大模型专注于某一领域的专业知识、术语和任务,能够提供更精准、专业的输出。
一:基础流程
1. 理解 DeepSeek 和 RAGFlow
-
DeepSeek: 这是一个用于深度学习和自然语言处理的框架,通常用于训练和优化大型语言模型。
-
RAGFlow: 这是一个基于检索增强生成(Retrieval-Augmented Generation, RAG)的框架,结合了检索和生成模型,适用于问答、对话等任务。
2. 确定垂直领域
首先,明确你要构建的垂直领域。例如,医疗、法律、金融等。确定领域后,收集相关的数据集和知识库。
3. 数据准备
-
数据集: 收集和整理领域相关的文本数据,如论文、文档、FAQ等。
-
知识库: 构建一个结构化的知识库,包含领域内的关键概念、实体和关系。
4. 模型选择与训练
-
预训练模型: 选择一个适合的预训练语言模型(如GPT、