使用 Graph Maker 轻松将文本转换为知识图 一个开源库,用于使用 Llama 3 和 Mixtral 等开源 LLM 从文本语料库构建知识图。

Graph Maker是一个Python库,利用LLM如Llama3和Mixtral,从文本中构建知识图谱。本文介绍该库的工作原理,包括定义本体、文本处理、图保存到Neo4j,并探讨其在RAG中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在本文中,我将分享一个 Python 库——Graph Maker——它可以根据给定的本体从文本语料库创建知识图。 Graph Maker 使用 Llama3、Mistral、Mixtral 或 Gemma 等开源 LLM 来提取 KG。

我们将介绍图形制作器的“为什么”和“什么”的基础知识,简要回顾上一篇文章,以及当前的方法如何解决一些挑战。我将在本文末尾分享 GitHub 存储库。

介绍

本文是我几个月前写的关于如何将任何文本转换为图表的文章的续篇。

https://arxiv.org/abs/2403.11996

这是一篇引人入胜的论文,展示了知识图谱在人工智能时代的巨大潜力。它演示了如何使用 KG,不仅可以检索知识,还可以发现新知识。这是这篇论文中我最喜欢的摘录之一。

“例如,我们将展示这种方法如何将贝多芬第九交响曲等看似不同的概念与生物启发材料科学联系起来”

这些进展极大地重申了我在上一篇文章中提出的想法,并鼓励我进一步发展这些想法。

我还收到了来自其他技术人员的大量反馈,涉及他们在使用存储库时遇到的挑战,以及改进想法的建议。我将其中一些建议合并到了我在此处分享的新 Python 包中。

在我们讨论该软件包(The Graph Maker)的工作原理之前,让我们先讨论一下它的“原因”和“内容”。

简要回顾

<
<think>好的,我现在需要帮用户介绍大语言模型的搭建。首先,用户之前问过Ollama,现在转到大语言模型的搭建,可能他们对本地运行模型有兴趣,或者想更深入了解底层技术。我需要先明确用户的需求层次:是学术研究、企业应用还是个人项目? 接下来,用户可能具备一定的技术背景,但需要结构清晰的步骤说明。我需要分模块讲解,从基础概念到实际步骤,再到优化挑战。确保每个部分都有逻辑衔接,同时用例子公式辅助理解。 记得之前的对话中,用户要求使用中文,且数学公式用$...$$$...$$格式。所以在介绍模型结构时,要插入相关的数学表达式,比如Transformer的自注意力机制公式。 另外,用户可能关心硬件要求实际应用中的挑战,比如计算资源、数据准备训练调优。需要详细说明这些部分,给出具体的数据量示例优化策略,比如混合精度训练或分布式计算。 还要注意区分不同阶段的搭建步骤,从数据准备到模型训练、评估部署,再到优化环节。每个步骤中的关键点要突出,比如数据清洗的重要性,超参数调整的方法。 最后,考虑到用户可能想实际动手搭建,需要推荐一些流行的开源模型框架,如Hugging Face的Transformers库,方便他们快速入门。同时,提醒注意伦理法律问题,确保回答全面可靠。</think>以下是大语言模型(LLM)搭建的逐步解析,采用模块化结构说明: $$ \text{LLM搭建} = \text{数据} \otimes \text{架构} \otimes \text{算力} \otimes \text{优化} $$ ===== 基础架构层 ===== 1. **核心组件**: - Transformer架构:基于自注意力机制 $$ \text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$ - 参数规模:现代模型参数量满足 $$ 10^9 \leq N \leq 10^{12} $$ - 典型结构示例(GPT类): ```python class TransformerBlock(nn.Module): def __init__(self, dim, heads): super().__init__() self.attn = MultiHeadAttention(dim, heads) self.ffn = PositionWiseFFN(dim) ``` ===== 数据工程 ===== 2. **数据处理流程**: - 数据获取:需满足 $$ \text{数据量} \propto \text{模型参数}^{1.5} $$ - 清洗过程: ```text 原始语料 → 去重 → 过滤(毒性/低质内容) → 分词 → 向量化 ``` - 典型数据配比(以LLaMA为例): $$ \text{CommonCrawl} : \text{书籍} : \text{代码} = 4:2:1 $$ ===== 硬件需求 ===== 3. **算力配置**: - 训练阶段:满足不等式 $$ \text{GPU显存} \geq \frac{\text{参数量} \times 20\text{bytes}}{\text{并行度}} $$ - 推理优化:使用量化技术 $$ \text{FP32} \rightarrow \text{FP16} \rightarrow \text{INT8} $$ ===== 训练阶段 ===== 4. **关键训练技术**: - 分布式训练策略: ```mermaid graph LR A[数据并行] --> B[模型并行] B --> C[流水线并行] ``` - 混合精度训练: $$ \text{内存节省量} = \frac{\text{FP32大小}}{\text{FP16大小}} \approx 2\times $$ ===== 调优技术 ===== 5. **优化方法**: - 指令微调(Instruction Tuning): $$ \text{损失函数} = \alpha \mathcal{L}_{\text{CE}} + (1-\alpha)\mathcal{L}_{\text{KL}} $$ - 人类反馈强化学习(RLHF): $$ \pi_{\theta} = \arg\max_{\pi} \mathbb{E}_{x\sim \mathcal{D}}[r(x) \log \pi(y|x)] $$ ===== 部署方案 ===== 6. **推理加速**: - 技术组合: ``` FlashAttention + KV缓存 + 动态批处理 → 吞吐量↑ 延迟↓ ``` - 量化效果对比: | 精度 | 显存占用 | 推理速度 | |--------|----------|----------| | FP32 | 100% | 1× | | FP16 | 50% | 1.5× | | INT8 | 25% | 2× | ===== 实践建议 ===== 7. **实施路线图**: - 基础路线: ```python # Hugging Face典型流程 from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3-8B") ``` - 进阶方案: - 使用Megatron-LM进行分布式训练 - 采用vLLM优化推理服务 $$ \text{总成本} \approx 0.3 \times \text{参数量(B)} \times \text{训练时长(天)} \quad (\text{单位:万美元}) $$ **注意事项**: 1. 法律合规性:遵守模型授权协议(如GPL、Apache-2.0) 2. 伦理风险:需设置内容过滤层 $$ \text{Filter}(x) = \mathbb{I}(x \notin \mathcal{D}_{\text{harmful}}) $$ 3. 持续维护:模型衰减满足 $$ \text{性能} \propto e^{-t/\tau} \quad (\tau \approx 6\text{月}) $$ 建议从微调现有模型(如Llama 3)入手,逐步深入底层实现。完整搭建需团队协作,单人建议使用Colab Pro+/AWS p4d实例起步。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值