在本文中,我将分享一个 Python 库——Graph Maker——它可以根据给定的本体从文本语料库创建知识图。 Graph Maker 使用 Llama3、Mistral、Mixtral 或 Gemma 等开源 LLM 来提取 KG。
我们将介绍图形制作器的“为什么”和“什么”的基础知识,简要回顾上一篇文章,以及当前的方法如何解决一些挑战。我将在本文末尾分享 GitHub 存储库。
介绍
本文是我几个月前写的关于如何将任何文本转换为图表的文章的续篇。
https://arxiv.org/abs/2403.11996
这是一篇引人入胜的论文,展示了知识图谱在人工智能时代的巨大潜力。它演示了如何使用 KG,不仅可以检索知识,还可以发现新知识。这是这篇论文中我最喜欢的摘录之一。
“例如,我们将展示这种方法如何将贝多芬第九交响曲等看似不同的概念与生物启发材料科学联系起来”
这些进展极大地重申了我在上一篇文章中提出的想法,并鼓励我进一步发展这些想法。
我还收到了来自其他技术人员的大量反馈,涉及他们在使用存储库时遇到的挑战,以及改进想法的建议。我将其中一些建议合并到了我在此处分享的新 Python 包中。
在我们讨论该软件包(The Graph Maker)的工作原理之前,让我们先讨论一下它的“原因”和“内容”。