巧用LEF实现row aware track规划

对于常规的track,通常基于LEF里的pitch,offset就可以直接创建(PS:当然也有invs自动调整的场景,这个需要用户留意),但是由于std-cell 的PG pin的存在,这个对于M1 (std-cell pin layer)track,是有一点小复杂,如果用户想充分利用M1的track,需要一点小技巧,这篇文章采用了了LEF里的一个特性来实现这个目的。闲言少叙,ICer GO!
在这里插入图片描述

大部分的std-cell LIB的pin (PG signal)基本都是出在最低层,譬如:M1,由于IR的考虑和tap-less的设计策略,M1的PG pin通常不会使用min width。所以用户会经常碰到M1的PG pin的相邻track无法利用的问题,从而导致一些track的浪费。

M1 track 的场景

譬如某55nm工艺,tech_lef 对M1的描述如下:

在这里插入图片描述

可以看到,min width是0.09

PS: 这里为了方便,pitch (0.2) > width(0.09) + spacing (0.09)

std-cell的细节如下:

在这里插入图片描述

itemvalue
Std-cell row1.2
PG pin width0.1
Track pitch0.2

所以,这里在PG pin的相邻的track和PG pin的间距只有0.05,这个track显然是无法被利用的。

在这里插入图片描述

另外,由于PG pin width(0.1)正好是pitch(0.2)的一半,tech_lef里边也声明了offset是0.1,所以这样的每一个stdcell的M1 的PG pin 都会处于M1的两个track的正中心。(见下图)

在这里插入图片描述

PS:这里也是std-cell 设计成track的整数倍的一个原因,方便用户在row和track之间做关联

这样,对于上述情况,在每一行row的stdcell上都会重复出现

0.2(pitch) = pg_pin_width(0.1) + pg_pin_相邻track_spacing(0.02)*2

所以,为了可以让PG pin相邻的track可以使用利用上,就需将和PG相邻track 做特殊处理,其他的track 依然按照正常的pitch进行规划即可。

invs 内建命令方式

Invs里边提供了add_track的命令,可以对于局部track进行调整和定义,也支持使用比较复杂的-pitch_pattern-width_pitch_pattern模式,同时也可以支持repeat功能,减少用户的脚本量。

譬如:

invs> add_tracks –pitch_pattern {M1 pitch n {pitch m repeat p} pitch n {pitch m repeat p} ...... pitch n {pitch m repeat p}}  

基于pattern: pitch_n * 1 + pitch_n*p)的多次重复的M1 track array,直至die edge。这样的写法有以下几个问题:

  • 脚本量过大:每一个pattern都需要手动重复
  • 导出的DEF也较为复杂(基于输出脚本量)
  • 不方便维护

所以,这里推荐采用下列的更为智慧的一种方式

LEF 指引实现row aware 的track构建

仔细观察这个问题,目前要解决的是std-cell PG pin相邻的track的间距,其他的track 依然维持当前的pitch。

功能介绍

在LEF 5.8里边,有一个property可以单独定义row对上下的track pitch要求,其余的pitch依然按照常规的的pitch构建

在这里插入图片描述

譬如下例:

PITCH 0.1 FIRSTLASTPITCH 0.14 

此时,invs会对基于row的相邻pitch,采用FIRSTLASTPITCH的定义:0.14,对于其他的pitch,使用PITCH 的定义:0.1,示意如下。

在这里插入图片描述

所以,

row = FIRSTLASTPITCH * 2 + n*PITCH 

这里的智能之处就是n是invs根据row和PITCH共同演算出来的,不需要用户去做显性定义,更不用去手动重复pattern,这个对于大大提升了track的创建效率,也减少了的DEF的数据量。

就这个例子而言,row是1.08,那么根据上述公式,可以得到n=8,完整算式是:

1.08(row) = 0.14(FIRSTLASTPITCH) * 2 + 8* 0.1 (PITCH )

这种考虑row的pitch规划,可以很好的兼顾row和pitch,从而让所有的M1 track都是属于可用状态。由于这里是对FIRSTLASTPITCH统一规定,所以PG pin的中线(center line)需要位于两个pitch的正中央。目前看过很多std-cell lib,这个应该是std-cell的一个设计准则。

项目实战

针对文章开始的stdcell和tech_lef描述,目前需要下列的LEF进行描述对上述功能进行是能:

在这里插入图片描述

为了让5.8对于古早LEF有很好的兼容性,这里使用的是PROPERTYDEFINITIONS的方式对此功能进行引入,所以无论你的LEF是之前的任意老版本(VERSION 5.7|5.6 etc.; ),这种写法都可以让invs正确识别。

这个时候track 的结果如下:

在这里插入图片描述

PS:这个示例比较凑巧,PG pin的中线正好和track重合,对于此类简单问题,用户也可以使用offset的方式进行调整,对于复杂的情形,建议使用上述LEF的方式。

Track的调整比对

在这里插入图片描述

可见,经过调整优化,M1的available track 提升了:14.4%

【敲黑板划重点】

image-20240503184222477
track是绕线的基础资源,巧用LEF的方式,可以有效地利用M1的track,对于资源有限的项目而言,不失为一种,在不改变die size的情形下有效提升资源的有效手段

参考资料

Cadence LEF/DEF 5.8 Language Reference
Cadence Innovus Text Command Reference

智慧政务:开启智慧城市新篇章 在当今数字化时代,智慧政务作为智慧城市建设的核心组成部分,正逐步成为提升政府治理能力和公共服务水平的关键力量。 面对传统政务模式中的信息孤岛、管理困难、安全威胁等诸多问题,智慧政务以其独特的优势和解决方案,为政府现代化转型开辟了新路径。 一、传统政务的困境 传统政务模式下,各部门间信息不互通,形成严重的信息孤岛现象,导致管理效率低下。 政府网站缺乏有效管理,信息更新缓慢,无法及时响应民众需求。 同时,安全威胁如黑客攻击和非法入侵频发,严重威胁政务信息安全。 此外,公务人员每日忙于单一、重复的审批任务,企业办事仍需奔波于多个部门之间,个人办证流程复杂且效率低下,这些问题迫切需要得到解决。 二、智慧政务的发展方向与优势 智慧政务通过资源开放、内部协调、决策精准化等手段,推动政府向更加透明、互动、高效的方向发展。 其发展阶段涵盖了从基本在线服务到流程和组织转型的全方位变革。 智慧政务应用深度广泛,包括统一的业务处理云平台、数据交换平台等,实现了政务流程的全面优化。 智慧政务的优势显著:首先,它大幅提高了行政效能,通过优化审批流程,缩短了审批周期,提升了服务质量。 其次,智慧政务促进了信息公开,增强了工作透明度,完善了监督考核机制。 此外,智慧政务还积极响应节能减排号召,实现无纸化办公,减少纸张及打印耗材的使用,降低了出行能耗。 三、智慧政务解决方案:云平台的崛起 云计算作为智慧政务的基础设施,以其资源共享、创新模式、降低成本、随需服务等特性,为智慧政务建设提供了强有力的技术支撑。 通过云平台,政府各部门能够更好地共享信息化基础资源,解决传统政务中基础设施使用率低、资源需求分散等问题。 同时,云计算带来的建设和服务模式创新,使政府信息化工作重点从资产管理转向服务管理,提高了政府运行效率。 四、智慧政务的应用模式与愿景 智慧政务的应用模式实现了从物理实体存在到网络虚拟方式的转变,政府组织结构也从金字塔型向网络型扁平化结构过渡。 这种转变使得政府能够跨越地理限制,实现7×24小时不间断服务。 智慧政务的愿景是构建全程电子化办公环境,待办事件及时推送,政务新闻通过APP及时发布,实现各种审批流程的一站式办理,企业所需政务信息及时推送。 总之,智慧政务作为智慧城市建设的钥匙,正以其独特的优势和解决方案,引领政府向更加高效、透明、互动的方向发展。 随着技术的不断进步和应用模式的不断创新,智慧政务的未来将更加光明,为构建智慧城市、提升民众生活质量作出更大贡献。
内容概要:本文围绕复杂威胁环境下的多无人机协同路径规划问题,提出了一种基于多段杜宾斯(Dubins)路径的协同策略,并提供了完整的Matlab代码实现。该研究重点解决在存在障碍物、禁飞区或其他威胁的环境中,多架无人机如何协同规划出满足动力学约束、避障要求且总体复杂威胁环境下的多无人机协同路径规划研究——基于多段杜宾斯(Dubins)路径的协同策略(Matlab代码实现)性能最优的安全路径。方法结合了Dubins曲线对无人机最小转弯半径等运动学限制的有效建模能力,通过多段路径拼接提升路径灵活性和适应性,并设计协同机制以避免无人机间的冲突,实现高效的任务执行。; 适合人群:具备一定编程基础,熟悉Matlab语言,对无人机路径规划、智能优化算法或自动化控制领域感兴趣的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于科研学习,理解多无人机协同路径规划的核心挑战与解决方案;②作为仿真平台,复现并验证基于Dubins路径的规划算法;③为实际无人机编队飞行、侦察、救援等应用场景提供算法设计与实现参考。; 阅读建议:建议读者结合文中提供的Matlab代码,逐步理解算法的实现逻辑,重点关注威胁环境建模、Dubins路径生成、多机协同避碰等关键环节,并可通过修改参数或场景进行扩展实验,深化对路径规划策略的理解与应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值