学习《机器学习实战》
1、决策树的构造
1、决策树理解
决策树是一种分类器,根据已知的特征,做一个最纯净的划分。
例子:现在想构建一个邮件分类系统,第一步:先检测发送邮件的域名的地址,若地址是myEmployer.com,就把邮件放在无聊时需要阅读的邮件,若域名不是。第二步:就检测该邮件是否 含有曲棍球的关键字,若含有曲棍球的关键字,则放在需要及时处理的朋友邮件分类里,没有曲棍球的关键字,就放在无需阅读的垃圾邮件里面。整个分类的步骤如下图所示。
2、决策树优缺点
优点:计算得复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相干的特征数据
缺点:可能产生匹配过度的问题
3、构建决策树的一般流程
- 收集数据
- 准备数据:适用于标称型数据,数值型数据需要离散化。(标称型:一般在有限的数据中取,而且只存在是和否两种结果(一般用于分类))
- 分析数据:用于检测画出的图和自己理解的是否一致
- 训练算法:构建决策树,主要是剪枝和构造树
- 测试数据:用于计算错误率
- 使用算法
2、ID3
1、信息增益和熵
在划分数据集之前之后信息发生的变化称为信息增益,在ID3算法中,使用信息增益作为决策点。
集合信息的度量方式称为香农熵或者简称为熵。
熵的定义为信息的期望值。
信息定义:若待分类的事物可能存在于多个分类之中,则符号Xi的信息定义为:
其中p(xi)是选择该分类的概率。
熵的计算方式,所有类别所有可能值包含的信息期望值。公式如下:
2、实例
计算香农熵
下面有五个样本。特征是不浮出水面可以生存和是否有脚蹼,label是属于鱼类,如下表
不浮出水面可以生存 | 是否有脚蹼 | 属于鱼类 | |
---|---|---|---|
1 | 是 | 是 | 是 |
2 | 是 | 是 | 是 |
3 | 是 | 否 | 否 |
4 | 否 | 是 | 否 |
5 | 否 | 是 | 否 |
第一步:创建数据特征矩阵:
def createDataSet():
dataSet = [[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
labels = ['no surfacing','flippers']
return dataSet, labels
第二步,根据已知特征计算熵
def calcShannonEnt(dataSet):
"""
:param dataSet: 特征列表,dataSet
:return:
"""
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1] # 获取特征
if currentLabel not in labelCounts.keys(): # 保存特征出现的次数
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts: # 遍历存储所有的特征列表,也就是yes:3 no :2
prob = float(labelCounts[key]) / numEntries # 计算每个特征出现的概率
shannonEnt -= prob * log(prob, 2) # 计算总的信息熵
return shannonEnt
划分数据集
分类算法处理计算香农熵,还需要划分数据集,度量划分数据集的熵,以确定是否正确的划分数据。对每个特征划分数据集的结果计算一次信息熵,判断按照那种方式是最好的划分数据集的方式,比如在二维坐标轴上,按照x轴划分好还是y轴划分好。
根据跟定的数据集的划分数据集的代码
def splitDataSet(dataSet, axis, value):
"""
:param dataSet: 数据集列表 dataSet
:param axis: 划分的特征 0-->不浮出水面可以生存和1-->是否有脚蹼
:param value: 需要返回特征的值
:return:
if里面三行,特征抽取的代码。
随着axis的增大,特征featVec也在移动,reducedFeatVec也随着移动。这两个分别占领的一行数据的两部分
"""
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
接下来遍历整个数据集,循环计算香农熵,找到最好的数据划分方式。
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 # 总的特征数
baseEntropy = calcShannonEnt(dataSet) # 计算当前数据集的信息熵
bestInfoGain = 0.0
bestFeature = -1
for i in range(numFeatures): # 特征迭代
featList = [example[i] for example in dataSet]#获取当前当前特征列的所有值
uniqueVals = set(featList) # 构建当前列的特征唯一化
newEntropy = 0.0
for value in uniqueVals: #计算每种分类方式的信息熵
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
if (infoGain > bestInfoGain): #计算最好的信息增益
bestInfoGain = infoGain
bestFeature = i
return bestFeature
构建决策树
def majorityCnt(classList):
"""
:param classList: 分类名称的列表
:return: 返回出现次数最多的分类名称
"""
classCount={}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
# 类别相同则停止划分
if classList.count(classList[0]) == len(classList):
return classList[0]
# 遍历所有特征,返回出现次数最多的类别
if len(dataSet[0]) == 1:
return majorityCnt(classList)
# 寻找最好的作为特征划分的特征编号
bestFeat = chooseBestFeatureToSplit(dataSet)
# 获取该编号对应的值
bestFeatLabel = labels[bestFeat]
# 初始化树结构,存储树信息
myTree = {bestFeatLabel:{}}
# 删除当前最优的特征值
del(labels[bestFeat])
# 得到列表包含的所有属性值
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
# 每个数据集上递归调用,将返回的值插入myTree
for value in uniqueVals:
subLabels = labels[:] # 复制类别标签
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
return myTree
结果打印
if __name__ == '__main__':
myDat,labels = createDataSet()
myTree = createTree(myDat,labels)
print(myTree)
结果:
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}